Visible to the public Biblio

Filters: Author is Bobba, Rakesh B.  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Marohn, Byron, Wright, Charles V., Feng, Wu-chi, Rosulek, Mike, Bobba, Rakesh B..  2017.  Approximate Thumbnail Preserving Encryption. Proceedings of the 2017 on Multimedia Privacy and Security. :33–43.
Thumbnail preserving encryption (TPE) was suggested by Wright et al. [Information Hiding & Multimedia Security Workshop 2015] as a way to balance privacy and usability for online image sharing. The idea is to encrypt a plaintext image into a ciphertext image that has roughly the same thumbnail as well as retaining the original image format. At the same time, TPE allows users to take advantage of much of the functionality of online photo management tools, while still providing some level of privacy against the service provider. In this work we present two new approximate TPE encryption schemes. In our schemes, ciphertexts and plaintexts have perceptually similar, but not identical, thumbnails. Our constructions are the first TPE schemes designed to work well with JPEG compression. In addition, we show that they also have provable security guarantees that characterize precisely what information about the plaintext is leaked by the ciphertext image. We empirically evaluate our schemes according to the similarity of plaintext & ciphertext thumbnails, increase in file size under JPEG compression, preservation of perceptual image hashes, among other aspects. We also show how approximate TPE can be an effective tool to thwart inference attacks by machine-learning image classifiers, which have shown to be effective against other image obfuscation techniques.
Rajabi, Arezoo, Bobba, Rakesh B..  2016.  A Resilient Algorithm for Power System Mode Estimation Using Synchrophasors. Proceedings of the 2Nd Annual Industrial Control System Security Workshop. :23–29.

Bulk electric systems include hundreds of synchronous generators. Faults in such systems can induce oscillations in the generators which if not detected and controlled can destabilize the system. Mode estimation is a popular method for oscillation detection. In this paper, we propose a resilient algorithm to estimate electro-mechanical oscillation modes in large scale power system in the presence of false data. In particular, we add a fault tolerance mechanism to a variant of alternating direction method of multipliers (ADMM) called S-ADMM. We evaluate our method on an IEEE 68-bus test system under different attack scenarios and show that in all the scenarios our algorithm converges well.