Visible to the public Biblio

Filters: Author is Jin, Hongxia  [Clear All Filters]
Wang, Jing, Wang, Na, Jin, Hongxia.  2016.  Context Matters?: How Adding the Obfuscation Option Affects End Users' Data Disclosure Decisions Proceedings of the 21st International Conference on Intelligent User Interfaces. :299–304.

Recent advancement of smart devices and wearable tech-nologies greatly enlarges the variety of personal data people can track. Applications and services can leverage such data to provide better life support, but also impose privacy and security threats. Obfuscation schemes, consequently, have been developed to retain data access while mitigate risks. Compared to offering choices of releasing raw data and not releasing at all, we examine the effect of adding a data obfuscation option on users' disclosure decisions when configuring applications' access, and how that effect varies with data types and application contexts. Our online user experiment shows that users are less likely to block data access when the obfuscation option is available except for locations. This effect significantly differs between applications for domain-specific dynamic tracking data, but not for generic personal traits. We further unpack the role of context and discuss the design opportunities.

Su, Dong, Cao, Jianneng, Li, Ninghui, Bertino, Elisa, Jin, Hongxia.  2016.  Differentially Private K-Means Clustering. Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy. :26–37.

There are two broad approaches for differentially private data analysis. The interactive approach aims at developing customized differentially private algorithms for various data mining tasks. The non-interactive approach aims at developing differentially private algorithms that can output a synopsis of the input dataset, which can then be used to support various data mining tasks. In this paper we study the effectiveness of the two approaches on differentially private k-means clustering. We develop techniques to analyze the empirical error behaviors of the existing interactive and non-interactive approaches. Based on the analysis, we propose an improvement of DPLloyd which is a differentially private version of the Lloyd algorithm. We also propose a non-interactive approach EUGkM which publishes a differentially private synopsis for k-means clustering. Results from extensive and systematic experiments support our analysis and demonstrate the effectiveness of our improvement on DPLloyd and the proposed EUGkM algorithm.