Visible to the public Biblio

Found 279 results

Filters: Keyword is telecommunication traffic  [Clear All Filters]
2021-09-21
Vaseer, Gurveen.  2020.  Multi-Attack Detection Using Forensics and Neural Network Based Prevention for Secure MANETs. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.
This paper presents Forensic methods for detection and prevention of multiple attacks along with neural networks like Denial-of-Service (DoS), probe, vampire, and User-to-Root (U2R) attacks, in a Mobile Ad hoc Network (MANET). We accomplish attacker(s) detection and prevention percentage upto 99% in varied node density scenarios 50/100/150.
2021-09-08
Bhati, Akhilesh, Bouras, Abdelaziz, Ahmed Qidwai, Uvais, Belhi, Abdelhak.  2020.  Deep Learning Based Identification of DDoS Attacks in Industrial Application. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :190–196.
Denial of Service (DoS) attacks are very common type of computer attack in the world of internet today. Automatically detecting such type of DDoS attack packets & dropping them before passing through is the best prevention method. Conventional solution only monitors and provide the feedforward solution instead of the feedback machine-based learning. A Design of Deep neural network has been suggested in this paper. In this approach, high level features are extracted for representation and inference of the dataset. Experiment has been conducted based on the ISCX dataset for year 2017, 2018 and CICDDoS2019 and program has been developed in Matlab R17b using Wireshark.
2021-09-07
Sudugala, A.U, Chanuka, W.H, Eshan, A.M.N, Bandara, U.C.S, Abeywardena, K.Y.  2020.  WANHEDA: A Machine Learning Based DDoS Detection System. 2020 2nd International Conference on Advancements in Computing (ICAC). 1:380–385.
In today's world computer communication is used almost everywhere and majority of them are connected to the world's largest network, the Internet. There is danger in using internet due to numerous cyber-attacks which are designed to attack Confidentiality, Integrity and Availability of systems connected to the internet. One of the most prominent threats to computer networking is Distributed Denial of Service (DDoS) Attack. They are designed to attack availability of the systems. Many users and ISPs are targeted and affected regularly by these attacks. Even though new protection technologies are continuously proposed, this immense threat continues to grow rapidly. Most of the DDoS attacks are undetectable because they act as legitimate traffic. This situation can be partially overcome by using Intrusion Detection Systems (IDSs). There are advanced attacks where there is no proper documented way to detect. In this paper authors present a Machine Learning (ML) based DDoS detection mechanism with improved accuracy and low false positive rates. The proposed approach gives inductions based on signatures previously extracted from samples of network traffic. Authors perform the experiments using four distinct benchmark datasets, four machine learning algorithms to address four of the most harmful DDoS attack vectors. Authors achieved maximum accuracy and compared the results with other applicable machine learning algorithms.
2021-09-01
Wang, Zizhong, Wang, Haixia, Shao, Airan, Wang, Dongsheng.  2020.  An Adaptive Erasure-Coded Storage Scheme with an Efficient Code-Switching Algorithm. 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS). :1177—1178.
Using erasure codes increases consumption of network traffic and disk I/O tremendously when systems recover data, resulting in high latency of degraded reads. In order to mitigate this problem, we present an adaptive storage scheme based on data access skew, a fact that most data accesses are applied in a small fraction of data. In this scheme, we use both Local Reconstruction Code (LRC), whose recovery cost is low, to store frequently accessed data, and Hitchhiker (HH) code, which guarantees minimum storage cost, to store infrequently accessed data. Besides, an efficient switching algorithm between LRC and HH code with low network and computation costs is provided. The whole system will benefit from low degraded read latency while keeping a low storage overhead, and code-switching will not become a bottleneck.
2021-08-31
KARA, Ilker, AYDOS, Murat.  2020.  Cyber Fraud: Detection and Analysis of the Crypto-Ransomware. 2020 11th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0764–0769.
Currently as the widespread use of virtual monetary units (like Bitcoin, Ethereum, Ripple, Litecoin) has begun, people with bad intentions have been attracted to this area and have produced and marketed ransomware in order to obtain virtual currency easily. This ransomware infiltrates the victim's system with smartly-designed methods and encrypts the files found in the system. After the encryption process, the attacker leaves a message demanding a ransom in virtual currency to open access to the encrypted files and warns that otherwise the files will not be accessible. This type of ransomware is becoming more popular over time, so currently it is the largest information technology security threat. In the literature, there are many studies about detection and analysis of this cyber-bullying. In this study, we focused on crypto-ransomware and investigated a forensic analysis of a current attack example in detail. In this example, the attack method and behavior of the crypto-ransomware were analyzed and it was identified that information belonging to the attacker was accessible. With this dimension, we think our study will significantly contribute to the struggle against this threat.
2021-08-11
Odero, Stephen, Dargahi, Tooska, Takruri, Haifa.  2020.  Privacy Enhanced Interface Identifiers in IPv6. 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). :1—6.
The Internet Protocol Version 6 (IPV6) proposed to replace IPV4 to solve scalability challenges and improve quality of service and security. Current implementation of IPv6 uses static value that is determined from the Media Access Control (MAC) address as the Interface Identifier (IID). This results in a deterministic IID for each user that is the same regardless of any network changes. This provides an eavesdropper with the ability to easily track the physical location of the communicating nodes using simple tools, such as ping and traceroute. Moreover, this address generation method provides a means to correlate network traffic with a specific user which can be achieved by filtering the IID and traffic analysis. These serious privacy breaches need to be addressed before widespread deployment of IPv6. In this paper we propose a privacy-enhanced method for generating IID which combines different network parameters. The proposed method generates non-deterministic IIDs that is resistance against correlation attack. We validate our approach using Wireshark, ping and traceroute tools and show that our proposed approach achieves better privacy compared to the existing IID generation methods.
2021-07-08
Signori, Alberto, Campagnaro, Filippo, Wachlin, Kim-Fabian, Nissen, Ivor, Zorzi, Michele.  2020.  On the Use of Conversation Detection to Improve the Security of Underwater Acoustic Networks. Global Oceans 2020: Singapore – U.S. Gulf Coast. :1—8.
Security is one of the key aspects of underwater acoustic networks, due to the critical importance of the scenarios in which these networks can be employed. For example, attacks performed to military underwater networks or to assets deployed for tsunami prevention can lead to disastrous consequences. Nevertheless, countermeasures to possible network attacks have not been widely investigated so far. One way to identify possible attackers is by using reputation, where a node gains trust each time it exhibits a good behavior, and loses trust each time it behaves in a suspicious way. The first step for analyzing if a node is behaving in a good way is to inspect the network traffic, by detecting all conversations. This paper proposes both centralized and decentralized algorithms for performing this operation, either from the network or from the node perspective. While the former can be applied only in post processing, the latter can also be used in real time by each node, and so can be used for creating the trust value. To evaluate the algorithms, we used real experimental data acquired during the EDA RACUN project (Robust Underwater Communication in Underwater Networks).
2021-04-09
Chytas, S. P., Maglaras, L., Derhab, A., Stamoulis, G..  2020.  Assessment of Machine Learning Techniques for Building an Efficient IDS. 2020 First International Conference of Smart Systems and Emerging Technologies (SMARTTECH). :165—170.
Intrusion Detection Systems (IDS) are the systems that detect and block any potential threats (e.g. DDoS attacks) in the network. In this project, we explore the performance of several machine learning techniques when used as parts of an IDS. We experiment with the CICIDS2017 dataset, one of the biggest and most complete IDS datasets in terms of having a realistic background traffic and incorporating a variety of cyber attacks. The techniques we present are applicable to any IDS dataset and can be used as a basis for deploying a real time IDS in complex environments.
Noiprasong, P., Khurat, A..  2020.  An IDS Rule Redundancy Verification. 2020 17th International Joint Conference on Computer Science and Software Engineering (JCSSE). :110—115.
Intrusion Detection System (IDS) is a network security software and hardware widely used to detect anomaly network traffics by comparing the traffics against rules specified beforehand. Snort is one of the most famous open-source IDS system. To write a rule, Snort specifies structure and values in Snort manual. This specification is expressive enough to write in different way with the same meaning. If there are rule redundancy, it could distract performance. We, thus, propose a proof of semantical issues for Snort rule and found four pairs of Snort rule combinations that can cause redundancy. In addition, we create a tool to verify such redundancy between two rules on the public rulesets from Snort community and Emerging threat. As a result of our test, we found several redundancy issues in public rulesets if the user enables commented rules.
Usman, S., Winarno, I., Sudarsono, A..  2020.  Implementation of SDN-based IDS to protect Virtualization Server against HTTP DoS attacks. 2020 International Electronics Symposium (IES). :195—198.
Virtualization and Software-defined Networking (SDN) are emerging technologies that play a major role in cloud computing. Cloud computing provides efficient utilization, high performance, and resource availability on demand. However, virtualization environments are vulnerable to various types of intrusion attacks that involve installing malicious software and denial of services (DoS) attacks. Utilizing SDN technology, makes the idea of SDN-based security applications attractive in the fight against DoS attacks. Network intrusion detection system (IDS) which is used to perform network traffic analysis as a detection system implemented on SDN networks to protect virtualization servers from HTTP DoS attacks. The experimental results show that SDN-based IDS is able to detect and mitigate HTTP DoS attacks effectively.
Fadhilah, D., Marzuki, M. I..  2020.  Performance Analysis of IDS Snort and IDS Suricata with Many-Core Processor in Virtual Machines Against Dos/DDoS Attacks. 2020 2nd International Conference on Broadband Communications, Wireless Sensors and Powering (BCWSP). :157—162.
The rapid development of technology makes it possible for a physical machine to be converted into a virtual machine, which can operate multiple operating systems that are running simultaneously and connected to the internet. DoS/DDoS attacks are cyber-attacks that can threaten the telecommunications sector because these attacks cause services to be disrupted and be difficult to access. There are several software tools for monitoring abnormal activities on the network, such as IDS Snort and IDS Suricata. From previous studies, IDS Suricata is superior to IDS Snort version 2 because IDS Suricata already supports multi-threading, while IDS Snort version 2 still only supports single-threading. This paper aims to conduct tests on IDS Snort version 3.0 which already supports multi-threading and IDS Suricata. This research was carried out on a virtual machine with 1 core, 2 core, and 4 core processor settings for CPU, memory, and capture packet attacks on IDS Snort version 3.0 and IDS Suricata. The attack scenario is divided into 2 parts: DoS attack scenario using 1 physical computer, and DDoS attack scenario using 5 physical computers. Based on overall testing, the results are: In general, IDS Snort version 3.0 is better than IDS Suricata. This is based on the results when using a maximum of 4 core processor, in which IDS Snort version 3.0 CPU usage is stable at 55% - 58%, a maximum memory of 3,000 MB, can detect DoS attacks with 27,034,751 packets, and DDoS attacks with 36,919,395 packets. Meanwhile, different results were obtained by IDS Suricata, in which CPU usage is better compared to IDS Snort version 3.0 with only 10% - 40% usage, and a maximum memory of 1,800 MB. However, the capabilities of detecting DoS attacks are smaller with 3,671,305 packets, and DDoS attacks with a total of 7,619,317 packets on a TCP Flood attack test.
2021-04-08
Yamaguchi, A., Mizuno, O..  2020.  Reducing Processing Delay and Node Load Using Push-Based Information-Centric Networking. 2020 3rd World Symposium on Communication Engineering (WSCE). :59–63.
Information-Centric Networking (ICN) is attracting attention as a content distribution method against increasing network traffic. Content distribution in ICN adopts a pull-type communication method that returns data to Interest. However, in this case, the push-type communication method is advantageous. Therefore, the authors have proposed a method in which a server pushes content to reduce the node load in an environment where a large amount of Interest to specific content occurs in a short time. In this paper, we analyze the packet processing delay time with and without the proposed method in an environment where a router processes a large number of packets using a simulator. Simulation results show that the proposed method can reduce packet processing delay time and node load.
Nguyen, Q. N., Lopez, J., Tsuda, T., Sato, T., Nguyen, K., Ariffuzzaman, M., Safitri, C., Thanh, N. H..  2020.  Adaptive Caching for Beneficial Content Distribution in Information-Centric Networking. 2020 International Conference on Information Networking (ICOIN). :535–540.
Currently, little attention has been carried out to address the feasibility of in-network caching in Information-Centric Networking (ICN) for the design and real-world deployment of future networks. Towards this line, in this paper, we propose a beneficial caching scheme in ICN by storing no more than a specific number of replicas for each content. Particularly, to realize an optimal content distribution for deploying caches in ICN, a content can be cached either partially or as a full-object corresponding to its request arrival rate and data traffic. Also, we employ a utility-based replacement in each content node to keep the most recent and popular content items in the ICN interconnections. The evaluation results show that the proposal improves the cache hit rate and cache diversity considerably, and acts as a beneficial caching approach for network and service providers in ICN. Specifically, the proposed caching mechanism is easy to deploy, robust, and relevant for the content-based providers by enabling them to offer users high Quality of Service (QoS) and gain benefits at the same time.
Yang, Z., Li, X., Wei, L., Zhang, C., Gu, C..  2020.  SGX-ICN: A Secure and Privacy-Preserving Information-Centric Networking with SGX Enclaves. 2020 3rd International Conference on Hot Information-Centric Networking (HotICN). :142–147.
As the next-generation network architecture, Information-Centric Networking (ICN) has emerged as a novel paradigm to cope with the increasing demand for content delivery on the Internet. In contrast to the conventional host-centric architectures, ICN focuses on content retrieval based on their name rather than their storage location. However, ICN is vulnerable to various security and privacy attacks due to the inherent attributes of the ICN architectures. For example, a curious ICN node can monitor the network traffic to reveal the sensitive data issued by specific users. Hence, further research on privacy protection for ICN is needed. This paper presents a practical approach to effectively enhancing the security and privacy of ICN by utilizing Intel SGX, a commodity trusted execution environment. The main idea is to leverage secure enclaves residing on ICN nodes to do computations on sensitive data. Performance evaluations on the real-world datasets demonstrate the efficiency of the proposed scheme. Moreover, our scheme outperforms the cryptography based method.
Nasir, N. A., Jeong, S.-H..  2020.  Testbed-based Performance Evaluation of the Information-Centric Network. 2020 International Conference on Information and Communication Technology Convergence (ICTC). :166–169.
Proliferation of the Internet usage is rapidly increasing, and it is necessary to support the performance requirements for multimedia applications, including lower latency, improved security, faster content retrieval, and adjustability to the traffic load. Nevertheless, because the current Internet architecture is a host-oriented one, it often fails to support the necessary demands such as fast content delivery. A promising networking paradigm called Information-Centric Networking (ICN) focuses on the name of the content itself rather than the location of that content. A distinguished alternative to this ICN concept is Content-Centric Networking (CCN) that exploits more of the performance requirements by using in-network caching and outperforms the current Internet in terms of content transfer time, traffic load control, mobility support, and efficient network management. In this paper, instead of using the saturated method of validating a theory by simulation, we present a testbed-based performance evaluation of the ICN network. We used several new functions of the proposed testbed to improve the performance of the basic CCN. In this paper, we also show that the proposed testbed architecture performs better in terms of content delivery time compared to the basic CCN architecture through graphical results.
2021-03-30
Ashiku, L., Dagli, C..  2020.  Agent Based Cybersecurity Model for Business Entity Risk Assessment. 2020 IEEE International Symposium on Systems Engineering (ISSE). :1—6.

Computer networks and surging advancements of innovative information technology construct a critical infrastructure for network transactions of business entities. Information exchange and data access though such infrastructure is scrutinized by adversaries for vulnerabilities that lead to cyber-attacks. This paper presents an agent-based system modelling to conceptualize and extract explicit and latent structure of the complex enterprise systems as well as human interactions within the system to determine common vulnerabilities of the entity. The model captures emergent behavior resulting from interactions of multiple network agents including the number of workstations, regular, administrator and third-party users, external and internal attacks, defense mechanisms for the network setting, and many other parameters. A risk-based approach to modelling cybersecurity of a business entity is utilized to derive the rate of attacks. A neural network model will generalize the type of attack based on network traffic features allowing dynamic state changes. Rules of engagement to generate self-organizing behavior will be leveraged to appoint a defense mechanism suitable for the attack-state of the model. The effectiveness of the model will be depicted by time-state chart that shows the number of affected assets for the different types of attacks triggered by the entity risk and the time it takes to revert into normal state. The model will also associate a relevant cost per incident occurrence that derives the need for enhancement of security solutions.

Kuchar, K., Fujdiak, R., Blazek, P., Martinasek, Z., Holasova, E..  2020.  Simplified Method for Fast and Efficient Incident Detection in Industrial Networks. 2020 4th Cyber Security in Networking Conference (CSNet). :1—3.

This article is focused on industrial networks and their security. An industrial network typically works with older devices that do not provide security at the level of today's requirements. Even protocols often do not support security at a sufficient level. It is necessary to deal with these security issues due to digitization. It is therefore required to provide other techniques that will help with security. For this reason, it is possible to deploy additional elements that will provide additional security and ensure the monitoring of the network, such as the Intrusion Detection System. These systems recognize identified signatures and anomalies. Methods of detecting security incidents by detecting anomalies in network traffic are described. The proposed methods are focused on detecting DoS attacks in the industrial Modbus protocol and operations performed outside the standard interval in the Distributed Network Protocol 3. The functionality of the performed methods is tested in the IDS system Zeek.

2021-03-29
Ateş, Ç, Özdel, S., Anarim, E..  2020.  DDoS Detection Algorithm Based on Fuzzy Logic. 2020 28th Signal Processing and Communications Applications Conference (SIU). :1—4.

While internet technologies are developing day by day, threats against them are increasing at the same speed. One of the most serious and common types of attacks is Distributed Denial of Service (DDoS) attacks. The DDoS intrusion detection approach proposed in this study is based on fuzzy logic and entropy. The network is modeled as a graph and graphics-based features are used to distinguish attack traffic from non-attack traffic. Fuzzy clustering is applied based on these properties to indicate the tendency of IP addresses or port numbers to be in the same cluster. Based on this uncertainty, attack and non-attack traffic were modeled. The detection stage uses the fuzzy relevance function. This algorithm was tested on real data collected from Boğaziçi University network.

2021-03-18
Baolin, X., Minhuan, Z..  2020.  A Solution of Text Based CAPTCHA without Network Flow Consumption. 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS). :395—399.

With the widespread application of distributed information processing, information processing security issues have become one of the important research topics; CAPTCHA technology is often used as the first security barrier for distributed information processing and it prevents the client malicious programs to attack the server. The experiment proves that the existing “request / response” mode of CAPTCHA has great security risks. “The text-based CAPTCHA solution without network flow consumption” proposed in this paper avoids the “request / response” mode and the verification logic of the text-based CAPTCHA is migrated to the client in this solution, which fundamentally cuts off the client's attack facing to the server during the verification of the CAPTCHA and it is a high-security text-based CAPTCHA solution without network flow consumption.

2021-03-16
Freitas, M. Silva, Oliveira, R., Molinos, D., Melo, J., Rosa, P. Frosi, Silva, F. de Oliveira.  2020.  ConForm: In-band Control Plane Formation Protocol to SDN-Based Networks. 2020 International Conference on Information Networking (ICOIN). :574—579.

Although OpenFlow-based SDN networks make it easier to design and test new protocols, when you think of clean slate architectures, their use is quite limited because the parameterization of its flows resides primarily in TCP/IP protocols. Besides, despite the many benefits that SDN offers, some aspects have not yet been adequately addressed, such as management plane activities, network startup, and options for connecting the data plane to the control plane. Based on these issues and limitations, this work presents a bootstrap protocol for SDN-based networks, which allows, beyond the network topology discovery, automatic configuration of an inband control plane. The protocol is designed to act only on layer two, in an autonomous, distributed and deterministic way, with low overhead and has the intent to be the basement for the implementation of other management plane related activities. A formal specification of the protocol is provided. In addition, an analytical model was created to preview the number of required messages to establish the control plane. According to this model, the proposed protocol presents less overhead than similar de-facto protocols used to topology discovery in SDN networks.

2021-03-09
Tran, M., Choi, I., Moon, G. J., Vu, A. V., Kang, M. S..  2020.  A Stealthier Partitioning Attack against Bitcoin Peer-to-Peer Network. 2020 IEEE Symposium on Security and Privacy (SP). :894—909.

Network adversaries, such as malicious transit autonomous systems (ASes), have been shown to be capable of partitioning the Bitcoin's peer-to-peer network via routing-level attacks; e.g., a network adversary exploits a BGP vulnerability and performs a prefix hijacking attack (viz. Apostolaki et al. [3]). Due to the nature of BGP operation, such a hijacking is globally observable and thus enables immediate detection of the attack and the identification of the perpetrator. In this paper, we present a stealthier attack, which we call the EREBUS attack, that partitions the Bitcoin network without any routing manipulations, which makes the attack undetectable to control-plane and even to data-plane detectors. The novel aspect of EREBUS is that it makes the adversary AS a natural man-in-the-middle network of all the peer connections of one or more targeted Bitcoin nodes by patiently influencing the targeted nodes' peering decision. We show that affecting the peering decision of a Bitcoin node, which is believed to be infeasible after a series of bug patches against the earlier Eclipse attack [29], is possible for the network adversary that can use abundant network address resources (e.g., spoofing millions of IP addresses in many other ASes) reliably for an extended period of time at a negligible cost. The EREBUS attack is readily available for large ASes, such as Tier-1 and large Tier-2 ASes, against the vast majority of 10K public Bitcoin nodes with only about 520 bit/s of attack traffic rate per targeted Bitcoin node and a modest (e.g., 5-6 weeks) attack execution period. The EREBUS attack can be mounted by nation-state adversaries who would be willing to execute sophisticated attack strategies patiently to compromise cryptocurrencies (e.g., control the consensus, take down a cryptocurrency, censor transactions). As the attack exploits the topological advantage of being a network adversary but not the specific vulnerabilities of Bitcoin core, no quick patches seem to be available. We discuss that some naive solutions (e.g., whitelisting, rate-limiting) are ineffective and third-party proxy solutions may worsen the Bitcoin's centralization problem. We provide some suggested modifications to the Bitcoin core and show that they effectively make the EREBUS attack significantly harder; yet, their non-trivial changes to the Bitcoin's network operation (e.g., peering dynamics, propagation delays) should be examined thoroughly before their wide deployment.

Liu, G., Quan, W., Cheng, N., Lu, N., Zhang, H., Shen, X..  2020.  P4NIS: Improving network immunity against eavesdropping with programmable data planes. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :91—96.

Due to improving computational capacity of supercomputers, transmitting encrypted packets via one single network path is vulnerable to brute-force attacks. The versatile attackers secretly eavesdrop all the packets, classify packets into different streams, performs an exhaustive search for the decryption key, and extract sensitive personal information from the streams. However, new Internet Protocol (IP) brings great opportunities and challenges for preventing eavesdropping attacks. In this paper, we propose a Programming Protocol-independent Packet Processors (P4) based Network Immune Scheme (P4NIS) against the eavesdropping attacks. Specifically, P4NIS is equipped with three lines of defense to improve the network immunity. The first line is promiscuous forwarding by splitting all the traffic packets in different network paths disorderly. Complementally, the second line encrypts transmission port fields of the packets using diverse encryption algorithms. The encryption could distribute traffic packets from one stream into different streams, and disturb eavesdroppers to classify them correctly. Besides, P4NIS inherits the advantages from the existing encryption-based countermeasures which is the third line of defense. Using a paradigm of programmable data planes-P4, we implement P4NIS and evaluate its performances. Experimental results show that P4NIS can increase difficulties of eavesdropping significantly, and increase transmission throughput by 31.7% compared with state-of-the-art mechanisms.

Hakim, A. R., Rinaldi, J., Setiadji, M. Y. B..  2020.  Design and Implementation of NIDS Notification System Using WhatsApp and Telegram. 2020 8th International Conference on Information and Communication Technology (ICoICT). :1—4.

Network Intrusion Detection System (NIDS) can help administrators of a server in detecting attacks by analyzing packet data traffic on the network in real-time. If an attack occurs, an alert to the administrator is provided by NIDS so that the attack can be known and responded immediately. On the other hand, the alerts cannot be monitored by administrators all the time. Therefore, a system that automatically sends notifications to administrators in real-time by utilizing social media platforms is needed. This paper provides an analysis of the notification system built using Snort as NIDS with WhatsApp and Telegram as a notification platform. There are three types of attacks that are simulated and must be detected by Snort, which are Ping of Death attacks, SYN flood attacks, and SSH brute force attacks. The results obtained indicate that the system successfully provided notification in the form of attack time, IP source of the attack, source of attack port and type of attack in real-time.

Hossain, M. D., Ochiai, H., Doudou, F., Kadobayashi, Y..  2020.  SSH and FTP brute-force Attacks Detection in Computer Networks: LSTM and Machine Learning Approaches. 2020 5th International Conference on Computer and Communication Systems (ICCCS). :491—497.

Network traffic anomaly detection is of critical importance in cybersecurity due to the massive and rapid growth of sophisticated computer network attacks. Indeed, the more new Internet-related technologies are created, the more elaborate the attacks become. Among all the contemporary high-level attacks, dictionary-based brute-force attacks (BFA) present one of the most unsurmountable challenges. We need to develop effective methods to detect and mitigate such brute-force attacks in realtime. In this paper, we investigate SSH and FTP brute-force attack detection by using the Long Short-Term Memory (LSTM) deep learning approach. Additionally, we made use of machine learning (ML) classifiers: J48, naive Bayes (NB), decision table (DT), random forest (RF) and k-nearest-neighbor (k-NN), for additional detection purposes. We used the well-known labelled dataset CICIDS2017. We evaluated the effectiveness of the LSTM and ML algorithms, and compared their performance. Our results show that the LSTM model outperforms the ML algorithms, with an accuracy of 99.88%.

Zhou, B., He, J., Tan, M..  2020.  A Two-stage P2P Botnet Detection Method Based on Statistical Features. 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS). :497—502.

P2P botnet has become one of the most serious threats to today's network security. It can be used to launch kinds of malicious activities, ranging from spamming to distributed denial of service attack. However, the detection of P2P botnet is always challenging because of its decentralized architecture. In this paper, we propose a two-stage P2P botnet detection method which only relies on several traffic statistical features. This method first detects P2P hosts based on three statistical features, and then distinguishes P2P bots from benign P2P hosts by means of another two statistical features. Experimental evaluations on real-world traffic datasets shows that our method is able to detect hidden P2P bots with a detection accuracy of 99.7% and a false positive rate of only 0.3% within 5 minutes.