Visible to the public Biblio

Filters: Keyword is industrial control systems  [Clear All Filters]
Luzhnov, Vasiliy S., Sokolov, Alexander N., Barinov, Andrey E..  2019.  Simulation of Protected Industrial Control Systems Based on Reference Security Model using Weighted Oriented Graphs. 2019 International Russian Automation Conference (RusAutoCon). :1—5.
With the increase in the number of cyber attacks on industrial control systems, especially in critical infrastructure facilities, the problem of comprehensive analysis of the security of such systems becomes urgent. This, in turn, requires the availability of fundamental mathematical, methodological and instrumental basis for modeling automated systems, modeling attacks on their information resources, which would allow realtime system protection analysis. The paper proposes a basis for simulating protected industrial control systems, based on the developed reference security model, and a model for attacks on information resources of automated systems. On the basis of these mathematical models, a complex model of a protected automated system was developed, which can be used to build protection systems for automated systems used in production.
Javed Butt, Usman, Abbod, Maysam, Lors, Anzor, Jahankhani, Hamid, Jamal, Arshad, Kumar, Arvind.  2019.  Ransomware Threat and its Impact on SCADA. 2019 IEEE 12th International Conference on Global Security, Safety and Sustainability (ICGS3). :205—212.
Modern cybercrimes have exponentially grown over the last one decade. Ransomware is one of the types of malware which is the result of sophisticated attempt to compromise the modern computer systems. The governments and large corporations are investing heavily to combat this cyber threat against their critical infrastructure. It has been observed that over the last few years that Industrial Control Systems (ICS) have become the main target of Ransomware due to the sensitive operations involved in the day to day processes of these industries. As the technology is evolving, more and more traditional industrial systems are replaced with advanced industry methods involving advanced technologies such as Internet of Things (IoT). These technology shift help improve business productivity and keep the company's global competitive in an overflowing competitive market. However, the systems involved need secure measures to protect integrity and availability which will help avoid any malfunctioning to their operations due to the cyber-attacks. There have been several cyber-attack incidents on healthcare, pharmaceutical, water cleaning and energy sector. These ICS' s are operated by remote control facilities and variety of other devices such as programmable logic controllers (PLC) and sensors to make a network. Cyber criminals are exploring vulnerabilities in the design of these ICS's to take the command and control of these systems and disrupt daily operations until ransomware is paid. This paper will provide critical analysis of the impact of Ransomware threat on SCADA systems.
Hansch, Gerhard, Schneider, Peter, Fischer, Kai, Böttinger, Konstantin.  2019.  A Unified Architecture for Industrial IoT Security Requirements in Open Platform Communications. 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). :325—332.

We present a unified communication architecture for security requirements in the industrial internet of things. Formulating security requirements in the language of OPC UA provides a unified method to communicate and compare security requirements within a heavily heterogeneous landscape of machines in the field. Our machine-readable data model provides a fully automatable approach for security requirement communication within the rapidly evolving fourth industrial revolution, which is characterized by high-grade interconnection of industrial infrastructures and self-configuring production systems. Capturing security requirements in an OPC UA compliant and unified data model for industrial control systems enables strong use cases within modern production plants and future supply chains. We implement our data model as well as an OPC UA server that operates on this model to show the feasibility of our approach. Further, we deploy and evaluate our framework within a reference project realized by 14 industrial partners and 7 research facilities within Germany.

Wang, Fang, Qi, Weimin, Qian, Tonghui.  2019.  A Dynamic Cybersecurity Protection Method based on Software-defined Networking for Industrial Control Systems. 2019 Chinese Automation Congress (CAC). :1831–1834.
In this paper, a dynamic cybersecurity protection method based on software-defined networking (SDN) is proposed, according to the protection requirement analysis for industrial control systems (ICSs). This method can execute security response measures by SDN, such as isolation, redirection etc., based on the real-time intrusion detection results, forming a detecting-responding closed-loop security control. In addition, moving target defense (MTD) concept is introduced to the protection for ICSs, where topology transformation and IP/port hopping are realized by SDN, which can confuse and deceive the attackers and prevent attacks at the beginning, protection ICSs in an active manner. The simulation results verify the feasibility of the proposed method.
Brugman, Jonathon, Khan, Mohammed, Kasera, Sneha, Parvania, Masood.  2019.  Cloud Based Intrusion Detection and Prevention System for Industrial Control Systems Using Software Defined Networking. 2019 Resilience Week (RWS). 1:98—104.

Industrial control systems (ICS) are becoming more integral to modern life as they are being integrated into critical infrastructure. These systems typically lack application layer encryption and the placement of common network intrusion services have large blind spots. We propose the novel architecture, Cloud Based Intrusion Detection and Prevention System (CB-IDPS), to detect and prevent threats in ICS networks by using software defined networking (SDN) to route traffic to the cloud for inspection using network function virtualization (NFV) and service function chaining. CB-IDPS uses Amazon Web Services to create a virtual private cloud for packet inspection. The CB-IDPS framework is designed with considerations to the ICS delay constraints, dynamic traffic routing, scalability, resilience, and visibility. CB-IDPS is presented in the context of a micro grid energy management system as the test case to prove that the latency of CB-IDPS is within acceptable delay thresholds. The implementation of CB-IDPS uses the OpenDaylight software for the SDN controller and commonly used network security tools such as Zeek and Snort. To our knowledge, this is the first attempt at using NFV in an ICS context for network security.

Al Ghazo, Alaa T., Kumar, Ratnesh.  2019.  ICS/SCADA Device Recognition: A Hybrid Communication-Patterns and Passive-Fingerprinting Approach. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :19–24.
The Industrial Control System (ICS) and Supervisory Control and Data Acquisition (SCADA) systems are the backbones for monitoring and supervising factories, power grids, water distribution systems, nuclear plants, and other critical infrastructures. These systems are installed by third party contractors, maintained by site engineers, and operate for a long time. This makes tracing the documentation of the systems' changes and updates challenging since some of their components' information (type, manufacturer, model, etc.) may not be up-to-date, leading to possibly unaccounted security vulnerabilities in the systems. Device recognition is useful first step in vulnerability identification and defense augmentation, but due to the lack of full traceability in case of legacy ICS/SCADA systems, the typical device recognition based on document inspection is not applicable. In this paper, we propose a hybrid approach involving the mix of communication-patterns and passive-fingerprinting to identify the unknown devices' types, manufacturers, and models. The algorithm uses the ICS/SCADA devices's communication-patterns to recognize the control hierarchy levels of the devices. In conjunction, certain distinguishable features in the communication-packets are used to recognize the device manufacturer, and model. We have implemented this hybrid approach in Python, and tested on traffic data from a water treatment SCADA testbed in Singapore (iTrust).
Yang, Huan, Cheng, Liang, Chuah, Mooi Choo.  2019.  Deep-Learning-Based Network Intrusion Detection for SCADA Systems. 2019 IEEE Conference on Communications and Network Security (CNS). :1–7.
Supervisory Control and Data Acquisition (SCADA)networks are widely deployed in modern industrial control systems (ICSs)such as energy-delivery systems. As an increasing number of field devices and computing nodes get interconnected, network-based cyber attacks have become major cyber threats to ICS network infrastructure. Field devices and computing nodes in ICSs are subjected to both conventional network attacks and specialized attacks purposely crafted for SCADA network protocols. In this paper, we propose a deep-learning-based network intrusion detection system for SCADA networks to protect ICSs from both conventional and SCADA specific network-based attacks. Instead of relying on hand-crafted features for individual network packets or flows, our proposed approach employs a convolutional neural network (CNN)to characterize salient temporal patterns of SCADA traffic and identify time windows where network attacks are present. In addition, we design a re-training scheme to handle previously unseen network attack instances, enabling SCADA system operators to extend our neural network models with site-specific network attack traces. Our results using realistic SCADA traffic data sets show that the proposed deep-learning-based approach is well-suited for network intrusion detection in SCADA systems, achieving high detection accuracy and providing the capability to handle newly emerged threats.
Tychalas, Dimitrios, Keliris, Anastasis, Maniatakos, Michail.  2019.  LED Alert: Supply Chain Threats for Stealthy Data Exfiltration in Industrial Control Systems. 2019 IEEE 25th International Symposium on On-Line Testing and Robust System Design (IOLTS). :194–199.

Industrial Internet-of-Things has been touted as the next revolution in the industrial domain, offering interconnectivity, independence, real-time operation, and self-optimization. Integration of smart systems, however, bridges the gap between information and operation technology, creating new avenues for attacks from the cyber domain. The dismantling of this air-gap, in conjunction with the devices' long lifespan -in the range of 20-30 years-, motivates us to bring the attention of the community to emerging advanced persistent threats. We demonstrate a threat that bridges the air-gap by leaking data from memory to analog peripherals through Direct Memory Access (DMA), delivered as a firmware modification through the supply chain. The attack automatically adapts to a target device by leveraging the Device Tree and resides solely in the peripherals, completely transparent to the main CPU, by judiciously short-circuiting specific components. We implement this attack on a commercial Programmable Logic Controller, leaking information over the available LEDs. We evaluate the presented attack vector in terms of stealthiness, and demonstrate no observable overhead on both CPU performance and DMA transfer speed. Since traditional anomaly detection techniques would fail to detect this firmware trojan, this work highlights the need for industrial control system-appropriate techniques that can be applied promptly to installed devices.

Zou, Zhenwan, Hou, Yingsa, Yang, Huiting, Li, Mingxuan, Wang, Bin, Guo, Qingrui.  2019.  Research and Implementation of Intelligent Substation Information Security Risk Assessment Tool. 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). :1306–1310.
In order to improve the information security level of intelligent substation, this paper proposes an intelligent substation information security assessment tool through the research and analysis of intelligent substation information security risk and information security assessment method, and proves that the tool can effectively detect it. It is of great significance to carry out research on industrial control systems, especially intelligent substation information security.
Tran-Jørgensen, Peter W. V., Kulik, Tomas, Boudjadar, Jalil, Larsen, Peter Gorm.  2019.  Security Analysis of Cloud-Connected Industrial Control Systems Using Combinatorial Testing. Proceedings of the 17th ACM-IEEE International Conference on Formal Methods and Models for System Design. :1–11.

Industrial control systems are moving from monolithic to distributed and cloud-connected architectures, which increases system complexity and vulnerability, thus complicates security analysis. When exhaustive verification accounts for this complexity the state space being sought grows drastically as the system model evolves and more details are considered. Eventually this may lead to state space explosion, which makes exhaustive verification infeasible. To address this, we use VDM-SL's combinatorial testing feature to generate security attacks that are executed against the model to verify whether the system has the desired security properties. We demonstrate our approach using a cloud-connected industrial control system that is responsible for performing safety-critical tasks and handling client requests sent to the control network. Although the approach is not exhaustive it enables verification of mitigation strategies for a large number of attacks and complex systems within reasonable time.

Hou, Ye, Such, Jose, Rashid, Awais.  2019.  Understanding Security Requirements for Industrial Control System Supply Chains. 2019 IEEE/ACM 5th International Workshop on Software Engineering for Smart Cyber-Physical Systems (SEsCPS). :50–53.

We address the need for security requirements to take into account risks arising from complex supply chains underpinning cyber-physical infrastructures such as industrial control systems (ICS). We present SEISMiC (SEcurity Industrial control SysteM supply Chains), a framework that takes into account the whole spectrum of security risks - from technical aspects through to human and organizational issues - across an ICS supply chain. We demonstrate the effectiveness of SEISMiC through a supply chain risk assessment of Natanz, Iran's nuclear facility that was the subject of the Stuxnet attack.

Fujdiak, Radek, Blazek, Petr, Mlynek, Petr, Misurec, Jiri.  2019.  Developing Battery of Vulnerability Tests for Industrial Control Systems. 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–5.

Nowadays, the industrial control systems (ICS) face many challenges, where security is becoming one of the most crucial. This fact is caused by new connected environment, which brings among new possibilities also new vulnerabilities, threats, or possible attacks. The criminal acts in the ICS area increased over the past years exponentially, which caused the loss of billions of dollars. This also caused classical Intrusion Detection Systems and Intrusion Prevention Systems to evolve in order to protect among IT also ICS networks. However, these systems need sufficient data such as traffic logs, protocol information, attack patterns, anomaly behavior marks and many others. To provide such data, the requirements for the test environment are summarized in this paper. Moreover, we also introduce more than twenty common vulnerabilities across the ICS together with information about possible risk, attack vector (point), possible detection methods and communication layer occurrence. Therefore, the paper might be used as a base-ground for building sufficient data generator for machine learning and artificial intelligence algorithms often used in ICS/IDS systems.

Es-Salhi, Khaoula, Espes, David, Cuppens, Nora.  2019.  DTE Access Control Model for Integrated ICS Systems. Proceedings of the 14th International Conference on Availability, Reliability and Security. :1–9.

Integrating Industrial Control Systems (ICS) with Corporate System (IT) is one of the most important industrial orientations. With recent cybersecurity attacks, the security of integrated ICS systems has become the priority of industrial world. Access control technologies such as firewalls are very important for Integrated ICS (IICS) systems to control communication across different networks to protect valuable resources. However, conventional firewalls are not always fully compatible with Industrial Control Systems. In fact, firewalls can introduce significant latency while ICS systems usually are very demanding in terms of timing requirements. Besides, most of existing firewalls do not support all industrial protocols. This paper proposes a new access control model for integrated ICS systems based on Domain and Type Enforcement (DTE). This new model allows to define and apply enforced access controls with respect of ICS timing requirements. Access controls definition is based on a high level language that can be used by ICS administrators with ease. This paper also proposes an initial generic ruleset based on the ISA95 functional model. This generic ruleset simplifies the deployment of DTE access controls and provides a good introduction to the DTE concepts for administrators.

Dong, Xiao, Li, Qianmu, Hou, Jun, Zhang, Jing, Liu, Yaozong.  2019.  Security Risk Control of Water Power Generation Industrial Control Network Based on Attack and Defense Map. 2019 IEEE Fifth International Conference on Big Data Computing Service and Applications (BigDataService). :232–236.

With the latest development of hydroelectric power generation system, the industrial control network system of hydroelectric power generation has undergone the transformation from the dedicated network, using proprietary protocols to an increasingly open network, adopting standard protocols, and increasing integration with hydroelectric power generation system. It generally believed that with the improvement of the smart grid, the future hydroelectric power generation system will rely more on the powerful network system. The general application of standardized communication protocol and intelligent electronic equipment in industrial control network provides a technical guarantee for realizing the intellectualization of hydroelectric power generation system but also brings about the network security problems that cannot be ignored. In order to solve the vulnerability of the system, we analyze and quantitatively evaluate the industrial control network of hydropower generation as a whole, and propose a set of attack and defense strategies. The method of vulnerability assessment with high diversity score proposed by us avoids the indifference of different vulnerability score to the greatest extent. At the same time, we propose an optimal attack and defense decision algorithm, which generates the optimal attack and defense strategy. The work of this paper can distinguish the actual hazards of vulnerable points more effectively.

Chekole, Eyasu Getahun, Huaqun, Guo.  2019.  ICS-SEA: Formally Modeling the Conflicting Design Constraints in ICS. Proceedings of the Fifth Annual Industrial Control System Security (ICSS) Workshop. :60–69.

Industrial control systems (ICS) have been widely adopted in mission-critical infrastructures. However, the increasing prevalence of cyberattacks targeting them has been a critical security concern. On the other hand, the high real-time and availability requirements of ICS limits the applicability of certain available security solutions due to the performance overhead they introduce and the system unavailability they cause. Moreover, scientific metrics (mathematical models) are not available to evaluate the efficiency and resilience of security solutions in the ICS context. Hence, in this paper, we propose ICS-SEA to address the ICS design constraints of Security, Efficiency, and Availability (SEA). Our ICS-SEA formally models the real-time constraints and physical-state resiliency quantitatively based on a typical ICS. We then design two real-world ICS testbeds and evaluate the efficiency and resilience of a few selected security solutions using our defined models. The results show that our ICS-SEA is effective to evaluate security solutions against the SEA conflicting design constraints in ICS.

Azimi, Mahdi, Sami, Ashkan, Khalili, Abdullah.  2014.  A Security Test-Bed for Industrial Control Systems. Proceedings of the 1st International Workshop on Modern Software Engineering Methods for Industrial Automation. :26–31.

Industrial Control Systems (ICS) such as Supervisory Control And Data Acquisition (SCADA), Distributed Control Systems (DCS) and Distributed Automation Systems (DAS) control and monitor critical infrastructures. In recent years, proliferation of cyber-attacks to ICS revealed that a large number of security vulnerabilities exist in such systems. Excessive security solutions are proposed to remove the vulnerabilities and improve the security of ICS. However, to the best of our knowledge, none of them presented or developed a security test-bed which is vital to evaluate the security of ICS tools and products. In this paper, a test-bed is proposed for evaluating the security of industrial applications by providing different metrics for static testing, dynamic testing and network testing in industrial settings. Using these metrics and results of the three tests, industrial applications can be compared with each other from security point of view. Experimental results on several real world applications indicate that proposed test-bed can be successfully employed to evaluate and compare the security level of industrial applications.

Abdelghani, TSCHROUB.  2019.  Industrial Control Systems (Ics) Security in Power Transmission Network. 2019 Algerian Large Electrical Network Conference (CAGRE). :1–4.

The goal of this document is to provide knowledge of Security for Industrial Control Systems (ICS,) such as supervisory control and data acquisition (SCADA) which is implemented in power transmission network, power stations, power distribution grids and other big infrastructures that affect large number of persons and security of nations. A distinction between IT and ICS security is given to make a difference between the two disciplines. In order to avoid intrusion and destruction of industrials plants, some recommendations are given to preserve their security.

Murvay, Pal-Stefan, Groza, Bogdan.  2018.  A Brief Look at the Security of DeviceNet Communication in Industrial Control Systems. Proceedings of the Central European Cybersecurity Conference 2018. :5:1–5:6.
Security is a vital aspect of industrial control systems since they are used in critical infrastructures and manufacturing processes. As demonstrated by the increasing number of emerging exploits, securing such systems is still a challenge as the employed fieldbus technologies do not offer intrinsic support for basic security objectives. In this work we discuss some security aspects of DeviceNet, a communication protocol widely used for control applications especially in the North American industrial sector. Having the Controller Area Network (CAN) protocol at its base, DeviceNet inherits all the vulnerabilities that were already illustrated on CAN in-vehicle communication. We discuss how the lack of security in DeviceNet can be exploited and point on the fact that these vulnerabilities can be modelled by existing formal verification tools and countermeasures can be put in place.
Ibarra, Jaime, Javed Butt, Usman, Do, Anh, Jahankhani, Hamid, Jamal, Arshad.  2019.  Ransomware Impact to SCADA Systems and its Scope to Critical Infrastructure. 2019 IEEE 12th International Conference on Global Security, Safety and Sustainability (ICGS3). :1–12.
SCADA systems are being constantly migrated to modern information and communication technologies (ICT) -based systems named cyber-physical systems. Unfortunately, this allows attackers to execute exploitation techniques into these architectures. In addition, ransomware insertion is nowadays the most popular attacking vector because it denies the availability of critical files and systems until attackers receive the demanded ransom. In this paper, it is analysed the risk impact of ransomware insertion into SCADA systems and it is suggested countermeasures addressed to the protection of SCADA systems and its components to reduce the impact of ransomware insertion.
Wang, Dinghua, Feng, Dongqin.  2018.  Intrusion Detection Model of SCADA Using Graphical Features. 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :1208–1214.
Supervisory control and data acquisition system is an important part of the country's critical infrastructure, but its inherent network characteristics are vulnerable to attack by intruders. The vulnerability of supervisory control and data acquisition system was analyzed, combining common attacks such as information scanning, response injection, command injection and denial of service in industrial control systems, and proposed an intrusion detection model based on graphical features. The time series of message transmission were visualized, extracting the vertex coordinates and various graphic area features to constitute a new data set, and obtained classification model of intrusion detection through training. An intrusion detection experiment environment was built using tools such as MATLAB and power protocol testers. IEC 60870-5-104 protocol which is widely used in power systems had been taken as an example. The results of tests have good effectiveness.
McMahon, E., Patton, M., Samtani, S., Chen, H..  2018.  Benchmarking Vulnerability Assessment Tools for Enhanced Cyber-Physical System (CPS) Resiliency. 2018 IEEE International Conference on Intelligence and Security Informatics (ISI). :100–105.

Cyber-Physical Systems (CPSs) are engineered systems seamlessly integrating computational algorithms and physical components. CPS advances offer numerous benefits to domains such as health, transportation, smart homes and manufacturing. Despite these advances, the overall cybersecurity posture of CPS devices remains unclear. In this paper, we provide knowledge on how to improve CPS resiliency by evaluating and comparing the accuracy, and scalability of two popular vulnerability assessment tools, Nessus and OpenVAS. Accuracy and suitability are evaluated with a diverse sample of pre-defined vulnerabilities in Industrial Control Systems (ICS), smart cars, smart home devices, and a smart water system. Scalability is evaluated using a large-scale vulnerability assessment of 1,000 Internet accessible CPS devices found on Shodan, the search engine for the Internet of Things (IoT). Assessment results indicate several CPS devices from major vendors suffer from critical vulnerabilities such as unsupported operating systems, OpenSSH vulnerabilities allowing unauthorized information disclosure, and PHP vulnerabilities susceptible to denial of service attacks.

Gonzalez, D., Alhenaki, F., Mirakhorli, M..  2019.  Architectural Security Weaknesses in Industrial Control Systems (ICS) an Empirical Study Based on Disclosed Software Vulnerabilities. 2019 IEEE International Conference on Software Architecture (ICSA). :31–40.

Industrial control systems (ICS) are systems used in critical infrastructures for supervisory control, data acquisition, and industrial automation. ICS systems have complex, component-based architectures with many different hardware, software, and human factors interacting in real time. Despite the importance of security concerns in industrial control systems, there has not been a comprehensive study that examined common security architectural weaknesses in this domain. Therefore, this paper presents the first in-depth analysis of 988 vulnerability advisory reports for Industrial Control Systems developed by 277 vendors. We performed a detailed analysis of the vulnerability reports to measure which components of ICS have been affected the most by known vulnerabilities, which security tactics were affected most often in ICS and what are the common architectural security weaknesses in these systems. Our key findings were: (1) Human-Machine Interfaces, SCADA configurations, and PLCs were the most affected components, (2) 62.86% of vulnerability disclosures in ICS had an architectural root cause, (3) the most common architectural weaknesses were “Improper Input Validation”, followed by “Im-proper Neutralization of Input During Web Page Generation” and “Improper Authentication”, and (4) most tactic-related vulnerabilities were related to the tactics “Validate Inputs”, “Authenticate Actors” and “Authorize Actors”.

Urias, V. E., Stout, M. S. William, Leeuwen, B. V..  2018.  On the Feasibility of Generating Deception Environments for Industrial Control Systems. 2018 IEEE International Symposium on Technologies for Homeland Security (HST). :1–6.

The cyber threat landscape is a constantly morphing surface; the need for cyber defenders to develop and create proactive threat intelligence is on the rise, especially on critical infrastructure environments. It is commonly voiced that Supervisory Control and Data Acquisition (SCADA) systems and Industrial Control Systems (ICS) are vulnerable to the same classes of threats as other networked computer systems. However, cyber defense in operational ICS is difficult, often introducing unacceptable risks of disruption to critical physical processes. This is exacerbated by the notion that hardware used in ICS is often expensive, making full-scale mock-up systems for testing and/or cyber defense impractical. New paradigms in cyber security have focused heavily on using deception to not only protect assets, but also gather insight into adversary motives and tools. Much of the work that we see in today's literature is focused on creating deception environments for traditional IT enterprise networks; however, leveraging our prior work in the domain, we explore the opportunities, challenges and feasibility of doing deception in ICS networks.

Kravchik, Moshe, Shabtai, Asaf.  2018.  Detecting Cyber Attacks in Industrial Control Systems Using Convolutional Neural Networks. Proceedings of the 2018 Workshop on Cyber-Physical Systems Security and PrivaCy. :72-83.

This paper presents a study on detecting cyber attacks on industrial control systems (ICS) using convolutional neural networks. The study was performed on a Secure Water Treatment testbed (SWaT) dataset, which represents a scaled-down version of a real-world industrial water treatment plant. We suggest a method for anomaly detection based on measuring the statistical deviation of the predicted value from the observed value. We applied the proposed method by using a variety of deep neural network architectures including different variants of convolutional and recurrent networks. The test dataset included 36 different cyber attacks. The proposed method successfully detected 31 attacks with three false positives thus improving on previous research based on this dataset. The results of the study show that 1D convolutional networks can be successfully used for anomaly detection in industrial control systems and outperform recurrent networks in this setting. The findings also suggest that 1D convolutional networks are effective at time series prediction tasks which are traditionally considered to be best solved using recurrent neural networks. This observation is a promising one, as 1D convolutional neural networks are simpler, smaller, and faster than the recurrent neural networks.

Sokolov, A. N., Barinov, A. E., Antyasov, I. S., Skurlaev, S. V., Ufimtcev, M. S., Luzhnov, V. S..  2018.  Hardware-Based Memory Acquisition Procedure for Digital Investigations of Security Incidents in Industrial Control Systems. 2018 Global Smart Industry Conference (GloSIC). :1-7.

The safety of industrial control systems (ICS) depends not only on comprehensive solutions for protecting information, but also on the timing and closure of vulnerabilities in the software of the ICS. The investigation of security incidents in the ICS is often greatly complicated by the fact that malicious software functions only within the computer's volatile memory. Obtaining the contents of the volatile memory of an attacked computer is difficult to perform with a guaranteed reliability, since the data collection procedure must be based on a reliable code (the operating system or applications running in its environment). The paper proposes a new instrumental method for obtaining the contents of volatile memory, general rules for implementing the means of collecting information stored in memory. Unlike software methods, the proposed method has two advantages: firstly, there is no problem in terms of reading the parts of memory, blocked by the operating system, and secondly, the resulting contents are not compromised by such malicious software. The proposed method is relevant for investigating security incidents of ICS and can be used in continuous monitoring systems for the security of ICS.