Visible to the public Biblio

Filters: Keyword is National security  [Clear All Filters]
Nakayama, Kiyoshi, Muralidhar, Nikhil, Jin, Chenrui, Sharma, Ratnesh.  2019.  Detection of False Data Injection Attacks in Cyber-Physical Systems using Dynamic Invariants. 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). :1023–1030.
Modern cyber-physical systems are increasingly complex and vulnerable to attacks like false data injection aimed at destabilizing and confusing the systems. We develop and evaluate an attack-detection framework aimed at learning a dynamic invariant network, data-driven temporal causal relationships between components of cyber-physical systems. We evaluate the relative performance in attack detection of the proposed model relative to traditional anomaly detection approaches. In this paper, we introduce Granger Causality based Kalman Filter with Adaptive Robust Thresholding (G-KART) as a framework for anomaly detection based on data-driven functional relationships between components in cyber-physical systems. In particular, we select power systems as a critical infrastructure with complex cyber-physical systems whose protection is an essential facet of national security. The system presented is capable of learning with or without network topology the task of detection of false data injection attacks in power systems. Kalman filters are used to learn and update the dynamic state of each component in the power system and in-turn monitor the component for malicious activity. The ego network for each node in the invariant graph is treated as an ensemble model of Kalman filters, each of which captures a subset of the node's interactions with other parts of the network. We finally also introduce an alerting mechanism to surface alerts about compromised nodes.
Mikhalevich, I. F., Trapeznikov, V. A..  2019.  Critical Infrastructure Security: Alignment of Views. 2019 Systems of Signals Generating and Processing in the Field of on Board Communications. :1–5.
Critical infrastructures of all countries unites common cyberspace. In this space, there are many threats that can disrupt the security of critical infrastructure in one country, but also cause damage in other countries. This is a reality that makes it necessary to agree on intergovernmental national views on the composition of critical infrastructures, an assessment of their security and protection. The article presents an overview of views on critical infrastructures of the United States, the European Union, the United Kingdom, and the Russian Federation, the purpose of which is to develop common positions.
Mao, Zhong, Yan, Yujie, Wu, Jiahao, Hajjar, Jerome F., Padir, Taskin.  2019.  Automated Damage Assessment of Critical Infrastructure Using Online Mapping Technique with Small Unmanned Aircraft Systems. 2019 IEEE International Symposium on Technologies for Homeland Security (HST). :1–5.
Rapid inspection and assessment of critical infrastructure after man-made and natural disasters is a matter of homeland security. The primary aim of this paper is to demonstrate the potential of leveraging small Unmanned Aircraft System (sUAS) in support of the rapid recovery of critical infrastructure in the aftermath of catastrophic events. We propose our data collection, detection and assessment system, using a sUAS equipped with a Lidar and a camera. This method provides a solution in fast post-disaster response and assists human responders in damage investigation.
Vladimirovich, Menshikh Valerii, Iurevich, Kalkov Dmitrii, Evgenevna, Spiridonova Natalia.  2019.  Model of optimization of arrangement of video surveillance means with regard to ensuring their own security. 2019 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency (SUMMA). :4–7.
Currently, video surveillance systems play an important role in ensuring the safety of citizens, their property, etc., which greatly contributes to the reduction of crime. Due to the high intrinsic value and/or high efficiency of their use for the prevention and detection of crimes, they themselves often become the objects of illegal actions (theft, damage). The main purpose of video surveillance systems is to provide continuous visual monitoring of the situation at a particular facility or territory, as well as event registration. The breakdown of the camera is detected by the loss of signal in the control center. However, the absence of a signal for reasons other than these can also be caused by an accident on the power line, a communication channel break, software or hardware breakdown of the camera itself. In this regard, there is a problem of determining the exact cause of the lack of signal and, consequently, the need for a rapid response to it. The paper proposes an approach of video surveillance arrangement according to their main functional purpose, as well as their ability to monitor each other. Based on this approach, a mathematical model of the choice of locations and conditions of location of video surveillance equipment from a set of potentially acceptable as a problem of nonlinear Boolean programming is developed. This model maximizes the functionality of the video surveillance system, taking into account the importance of areas and objects of surveillance with restrictions on the number of video surveillance of each type, the nature of the terrain and existing buildings. An algorithm for solving this problem is proposed.
Thomopoulos, Stelios C. A..  2019.  Maritime Situational Awareness Forensics Tools for a Common Information Sharing Environment (CISE). 2019 4th International Conference on Smart and Sustainable Technologies (SpliTech). :1–5.
CISE stands for Common Information Sharing Environment and refers to an architecture and set of protocols, procedures and services for the exchange of data and information across Maritime Authorities of EU (European Union) Member States (MS's). In the context of enabling the implementation and adoption of CISE by different MS's, EU has funded a number of projects that enable the development of subsystems and adaptors intended to allow MS's to connect and make use of CISE. In this context, the Integrated Systems Laboratory (ISL) has led the development of the corresponding Hellenic and Cypriot CISE by developing a Control, Command & Information (C2I) system that unifies all partial maritime surveillance systems into one National Situational Picture Management (NSPM) system, and adaptors that allow the interconnection of the corresponding national legacy systems to CISE and the exchange of data, information and requests between the two MS's. Furthermore, a set of forensics tools that allow geospatial & time filtering and detection of anomalies, risk incidents, fake MMSIs, suspicious speed changes, collision paths, and gaps in AIS (Automatic Identification System), have been developed by combining motion models, AI, deep learning and fusion algorithms using data from different databases through CISE. This paper briefly discusses these developments within the EU CISE-2020, Hellenic CISE and CY-CISE projects and the benefits from the sharing of maritime data across CISE for both maritime surveillance and security. The prospect of using CISE for the creation of a considerably rich database that could be used for forensics analysis and detection of suspicious maritime traffic and maritime surveillance is discussed.
Kim, Joonsoo, Kim, Kyeongho, Jang, Moonsu.  2019.  Cyber-Physical Battlefield Platform for Large-Scale Cybersecurity Exercises. 2019 11th International Conference on Cyber Conflict (CyCon). 900:1–19.
In this study, we propose a platform upon which a cyber security exercise environment can be built efficiently for national critical infrastructure protection, i.e. a cyber-physical battlefield (CPB), to simulate actual ICS/SCADA systems in operation. Among various design considerations, this paper mainly discusses scalability, mobility, reality, extensibility, consideration of the domain or vendor specificities, and the visualization of physical facilities and their damage as caused by cyber attacks. The main purpose of the study was to develop a platform that can maximize the coverage that encompasses such design considerations. We discuss the construction of the platform through the final design choices. The features of the platform that we attempt to achieve are closely related to the target cyber exercise format. Design choices were made considering the construction of a realistic ICS/SCADA exercise environment that meets the goals and matches the characteristics of the Cyber Conflict Exercise (CCE), an annual national exercise organized by the National Security Research Institute (NSR) of South Korea. CCE is a real-time attack-defense battlefield drill between 10 red teams who try to penetrate a multi-level organization network and 16 blue teams who try to defend the network. The exercise platform provides scalability and a significant degree of freedom in the design of a very large-scale CCE environment. It also allowed us to fuse techniques such as 3D-printing and augmented reality (AR) to achieve the exercise goals. This CPB platform can also be utilized in various ways for different types of cybersecurity exercise. The successful application of this platform in Locked Shields 2018 (LS18) is strong evidence of this; it showed the great potential of this platform to integrate high-level strategic or operational exercises effectively with low-level technical exercises. This paper also discusses several possible improvements of the platform which could be made for better integration, as well as various exercise environments that can be constructed given the scalability and extensibility of the platform.
Yang, Chen, Liu, Tingting, Zuo, Lulu, Hao, Zhiyong.  2019.  An Empirical Study on the Data Security and Privacy Awareness to Use Health Care Wearable Devices. 2019 16th International Conference on Service Systems and Service Management (ICSSSM). :1–6.
Recently, several health care wearable devices which can intervene in health and collect personal health data have emerged in the medical market. Although health care wearable devices promote the integration of multi-layer medical resources and bring new ways of health applications for users, it is inevitable that some problems will be brought. This is mainly manifested in the safety protection of medical and health data and the protection of user's privacy. From the users' point of view, the irrational use of medical and health data may bring psychological and physical negative effects to users. From the government's perspective, it may be sold by private businesses in the international arena and threaten national security. The most direct precaution against the problem is users' initiative. For better understanding, a research model is designed by the following five aspects: Security knowledge (SK), Security attitude (SAT), Security practice (SP), Security awareness (SAW) and Security conduct (SC). To verify the model, structural equation analysis which is an empirical approach was applied to examine the validity and all the results showed that SK, SAT, SP, SAW and SC are important factors affecting users' data security and privacy protection awareness.
Skopik, Florian, Filip, Stefan.  2019.  Design principles for national cyber security sensor networks: Lessons learned from small-scale demonstrators. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–8.
The timely exchange of information on new threats and vulnerabilities has become a cornerstone of effective cyber defence in recent years. Especially national authorities increasingly assume their role as information brokers through national cyber security centres and distribute warnings on new attack vectors and vital recommendations on how to mitigate them. Although many of these initiatives are effective to some degree, they also suffer from severe limitations. Many steps in the exchange process require extensive human involvement to manually review, vet, enrich, analyse and distribute security information. Some countries have therefore started to adopt distributed cyber security sensor networks to enable the automatic collection, analysis and preparation of security data and thus effectively overcome limiting scalability factors. The basic idea of IoC-centric cyber security sensor networks is that the national authorities distribute Indicators of Compromise (IoCs) to organizations and receive sightings in return. This effectively helps them to estimate the spreading of malware, anticipate further trends of spreading and derive vital findings for decision makers. While this application case seems quite simple, there are some tough questions to be answered in advance, which steer the further design decisions: How much can the monitored organization be trusted to be a partner in the search for malware? How much control of the scanning process should be delegated to the organization? What is the right level of search depth? How to deal with confidential indicators? What can be derived from encrypted traffic? How are new indicators distributed, prioritized, and scan targets selected in a scalable manner? What is a good strategy to re-schedule scans to derive meaningful data on trends, such as rate of spreading? This paper suggests a blueprint for a sensor network and raises related questions, outlines design principles, and discusses lessons learned from small-scale pilots.
Alperovitch, Dmitri.  2011.  Towards establishment of cyberspace deterrence strategy. 2011 3rd International Conference on Cyber Conflict. :1–8.
The question of whether strategic deterrence in cyberspace is achievable given the challenges of detection, attribution and credible retaliation is a topic of contention among military and civilian defense strategists. This paper examines the traditional strategic deterrence theory and its application to deterrence in cyberspace (the newly defined 5th battlespace domain, following land, air, sea and space domains), which is being used increasingly by nation-states and their proxies to achieve information dominance and to gain tactical and strategic economic and military advantage. It presents a taxonomy of cyberattacks that identifies which types of threats in the confidentiality, integrity, availability cybersecurity model triad present the greatest risk to nation-state economic and military security, including their political and social facets. The argument is presented that attacks on confidentiality cannot be subject to deterrence in the current international legal framework and that the focus of strategy needs to be applied to integrity and availability attacks. A potential cyberdeterrence strategy is put forth that can enhance national security against devastating cyberattacks through a credible declaratory retaliation capability that establishes red lines which may trigger a counter-strike against all identifiable responsible parties. The author believes such strategy can credibly influence nation-state threat actors who themselves exhibit serious vulnerabilities to cyber attacks from launching a devastating cyber first strike.
Quweider, M., Lei, H., Zhang, L., Khan, F..  2018.  Managing Big Data in Visual Retrieval Systems for DHS Applications: Combining Fourier Descriptors and Metric Space Indexing. 2018 1st International Conference on Data Intelligence and Security (ICDIS). :188-193.

Image retrieval systems have been an active area of research for more than thirty years progressively producing improved algorithms that improve performance metrics, operate in different domains, take advantage of different features extracted from the images to be retrieved, and have different desirable invariance properties. With the ever-growing visual databases of images and videos produced by a myriad of devices comes the challenge of selecting effective features and performing fast retrieval on such databases. In this paper, we incorporate Fourier descriptors (FD) along with a metric-based balanced indexing tree as a viable solution to DHS (Department of Homeland Security) needs to for quick identification and retrieval of weapon images. The FDs allow a simple but effective outline feature representation of an object, while the M-tree provide a dynamic, fast, and balanced search over such features. Motivated by looking for applications of interest to DHS, we have created a basic guns and rifles databases that can be used to identify weapons in images and videos extracted from media sources. Our simulations show excellent performance in both representation and fast retrieval speed.

Isaacson, D. M..  2018.  The ODNI-OUSD(I) Xpress Challenge: An Experimental Application of Artificial Intelligence Techniques to National Security Decision Support. 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC). :104-109.
Current methods for producing and disseminating analytic products contribute to the latency of relaying actionable information and analysis to the U.S. Intelligence Community's (IC's) principal customers, U.S. policymakers and warfighters. To circumvent these methods, which can often serve as a bottleneck, we report on the results of a public prize challenge that explored the potential for artificial intelligence techniques to generate useful analytic products. The challenge tasked solvers to develop algorithms capable of searching and processing nearly 15,000 unstructured text files into a 1-2 page analytic product without human intervention; these analytic products were subsequently evaluated and scored using established IC methodologies and criteria. Experimental results from this challenge demonstrate the promise for the ma-chine generation of analytic products to ensure that the IC warns and informs in a more timely fashion.
Calhoun, Z., Maribojoc, P., Selzer, N., Procopi, L., Bezzo, N., Fleming, C..  2017.  Analysis of Identity and Access Management alternatives for a multinational information-sharing environment. 2017 Systems and Information Engineering Design Symposium (SIEDS). :208–213.
In the 21st century, each country must make decisions on how to utilize modern technologies to maximize benefits and minimize repercussions. For example, the United States Department of Defense (DoD) needs to be able to share information efficiently with its allies while simultaneously preventing unwarranted access or attacks. These attacks pose a threat to the national security of the United States, but proper use of the cyberspace provides countless benefits. The aim of this paper is to explore Identity and Access Management (IdAM) technologies that the Department of Defense can use in joint operations with allies that will allow efficient information-sharing and enhance security. To this end, we have created a methodology and a model for evaluating Identity and Access Management technologies that the Department of Defense can use in joint operations with other nations, with a specific focus on Japan and Australia. To evaluate these systems, we employed an approach that incorporates Political, Operational, Economic and Technical (POET) factors. Governance protocols, technological solutions, and political factors were first thoroughly reviewed and then used to construct an evaluation model to formally assess Identity and Access Management alternatives. This model provides systematic guidance on how the Department of Defense can improve their use of Identity and Access Management systems in the future.
MüUller, W., Kuwertz, A., Mühlenberg, D., Sander, J..  2017.  Semantic Information Fusion to Enhance Situational Awareness in Surveillance Scenarios. 2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI). :397–402.

In recent years, the usage of unmanned aircraft systems (UAS) for security-related purposes has increased, ranging from military applications to different areas of civil protection. The deployment of UAS can support security forces in achieving an enhanced situational awareness. However, in order to provide useful input to a situational picture, sensor data provided by UAS has to be integrated with information about the area and objects of interest from other sources. The aim of this study is to design a high-level data fusion component combining probabilistic information processing with logical and probabilistic reasoning, to support human operators in their situational awareness and improving their capabilities for making efficient and effective decisions. To this end, a fusion component based on the ISR (Intelligence, Surveillance and Reconnaissance) Analytics Architecture (ISR-AA) [1] is presented, incorporating an object-oriented world model (OOWM) for information integration, an expressive knowledge model and a reasoning component for detection of critical events. Approaches for translating the information contained in the OOWM into either an ontology for logical reasoning or a Markov logic network for probabilistic reasoning are presented.

Choucri, N., Agarwal, G..  2017.  Analytics for Smart Grid Cybersecurity. 2017 IEEE International Symposium on Technologies for Homeland Security (HST). :1–3.

Guidelines, directives, and policy statements are usually presented in ``linear'' text form - word after word, page after page. However necessary, this practice impedes full understanding, obscures feedback dynamics, hides mutual dependencies and cascading effects and the like, - even when augmented with tables and diagrams. The net result is often a checklist response as an end in itself. All this creates barriers to intended realization of guidelines and undermines potential effectiveness. We present a solution strategy using text as ``data'', transforming text into a structured model, and generate a network views of the text(s), that we then can use for vulnerability mapping, risk assessments and control point analysis. We apply this approach using two NIST reports on cybersecurity of smart grid, more than 600 pages of text. Here we provide a synopsis of approach, methods, and tools. (Elsewhere we consider (a) system-wide level, (b) aviation e-landscape, (c) electric vehicles, and (d) SCADA for smart grid).

Wang, C. H..  2015.  A Modelling Framework for Managing Risk-Based Checkpoint Screening Systems with Two-Type Inspection Queues. 2015 Third International Conference on Robot, Vision and Signal Processing (RVSP). :220–223.

In this paper, we study the security and system congestion in a risk-based checkpoint screening system with two kinds of inspection queues, named as Selectee Lanes and Normal Lanes. Based on the assessed threat value, the arrival crossing the security checkpoints is classified as either a selectee or a non-selectee. The Selectee Lanes with enhanced scrutiny are used to check selectees, while Normal Lanes are used to check non-selectees. The goal of the proposed modelling framework is to minimize the system congestion under the constraints of total security and limited budget. The system congestion of the checkpoint screening system is determined through a steady-state analysis of multi-server queueing models. By solving an optimization model, we can determine the optimal threshold for differentiating the arrivals, and determine the optimal number of security devices for each type of inspection queues. The analysis conducted in this study contributes managerial insights for understanding the operation and system performance of such risk-based checkpoint screening systems.

Kolkoori, S., Wrobel, N., Ewert, U..  2015.  A new X-ray backscatter technology for aviation security applications. 2015 IEEE International Symposium on Technologies for Homeland Security (HST). :1–5.

In order to enhance the supply chain security at airports, the German federal ministry of education and research has initiated the project ESECLOG (enhanced security in the air cargo chain) which has the goal to improve the threat detection accuracy using one-sided access methods. In this paper, we present a new X-ray backscatter technology for non-intrusive imaging of suspicious objects (mainly low-Z explosives) in luggage's and parcels with only a single-sided access. A key element in this technology is the X-ray backscatter camera embedded with a special twisted-slit collimator. The developed technology has efficiently resolved the problem related to the imaging of complex interior of the object by fixing source and object positions and changing only the scanning direction of the X-ray backscatter camera. Experiments were carried out on luggages and parcels packed with mock-up dangerous materials including liquid and solid explosive simulants. In addition, the quality of the X-ray backscatter image was enhanced by employing high-resolution digital detector arrays. Experimental results are discussed and the efficiency of the present technique to detect suspicious objects in luggages and parcels is demonstrated. At the end, important applications of the proposed backscatter imaging technology to the aviation security are presented.

Allen, J. H., Curtis, P. D., Mehravari, N., Crabb, G..  2015.  A proven method for identifying security gaps in international postal and transportation critical infrastructure. 2015 IEEE International Symposium on Technologies for Homeland Security (HST). :1–5.

The safety, security, and resilience of international postal, shipping, and transportation critical infrastructure are vital to the global supply chain that enables worldwide commerce and communications. But security on an international scale continues to fail in the face of new threats, such as the discovery by Panamanian authorities of suspected components of a surface-to-air missile system aboard a North Korean-flagged ship in July 2013 [1].This reality calls for new and innovative approaches to critical infrastructure security. Owners and operators of critical postal, shipping, and transportation operations need new methods to identify, assess, and mitigate security risks and gaps in the most effective manner possible.

Pirinen, R..  2014.  Studies of Integration Readiness Levels: Case Shared Maritime Situational Awareness System. Intelligence and Security Informatics Conference (JISIC), 2014 IEEE Joint. :212-215.

The research question of this study is: How Integration Readiness Level (IRL) metrics can be understood and realized in the domain of border control information systems. The study address to the IRL metrics and their definition, criteria, references, and questionnaires for validation of border control information systems in case of the shared maritime situational awareness system. The target of study is in improvements of ways for acceptance, operational validation, risk assessment, and development of sharing mechanisms and integration of information systems and border control information interactions and collaboration concepts in Finnish national and European border control domains.

Boleng, J., Novakouski, M., Cahill, G., Simanta, S., Morris, E..  2014.  Fusing Open Source Intelligence and Handheld Situational Awareness: Benghazi Case Study. Military Communications Conference (MILCOM), 2014 IEEE. :1421-1426.

This paper reports the results and findings of a historical analysis of open source intelligence (OSINT) information (namely Twitter data) surrounding the events of the September 11, 2012 attack on the US Diplomatic mission in Benghazi, Libya. In addition to this historical analysis, two prototype capabilities were combined for a table top exercise to explore the effectiveness of using OSINT combined with a context aware handheld situational awareness framework and application to better inform potential responders as the events unfolded. Our experience shows that the ability to model sentiment, trends, and monitor keywords in streaming social media, coupled with the ability to share that information to edge operators can increase their ability to effectively respond to contingency operations as they unfold.

Friedman, A., Hu, V.C..  2014.  Presentation 9. Attribute assurance for attribute based access control. IT Professional Conference (IT Pro), 2014. :1-3.

In recent years, Attribute Based Access Control (ABAC) has evolved as the preferred logical access control methodology in the Department of Defense and Intelligence Community, as well as many other agencies across the federal government. Gartner recently predicted that “by 2020, 70% of enterprises will use attribute-based access control (ABAC) as the dominant mechanism to protect critical assets, up from less that 5% today.” A definition and introduction to ABAC can be found in NIST Special Publication 800-162, Guide to Attribute Based Access Control (ABAC) Definition and Considerations and Intelligence Community Policy Guidance (ICPG) 500.2, Attribute-Based Authorization and Access Management. Within ABAC, attributes are used to make critical access control decisions, yet standards for attribute assurance have just started to be researched and documented. This presentation outlines factors influencing attributes that an authoritative body must address when standardizing attribute assurance and proposes some notional implementation suggestions for consideration. Attribute Assurance brings a level of confidence to attributes that is similar to levels of assurance for authentication (e.g., guidelines specified in NIST SP 800-63 and OMB M-04-04). There are three principal areas of interest when considering factors related to Attribute Assurance. Accuracy establishes the policy and technical underpinnings for semantically and syntactically correct descriptions of Subjects, Objects, or Environmental conditions. Interoperability considers different standards and protocols used for secure sharing of attributes between systems in order to avoid compromising the integrity and confidentiality of the attributes or exposing vulnerabilities in provider or relying systems or entities. Availability ensures that the update and retrieval of attributes satisfy the application to which the ABAC system is applied. In addition, the security and backup capability of attribute repositories need to be considered. Similar to a Level of Assurance (LOA), a Level of Attribute Assurance (LOAA) assures a relying party that the attribute value received from an Attribute Provider (AP) is accurately associated with the subject, resource, or environmental condition to which it applies. An Attribute Provider (AP) is any person or system that provides subject, object (or resource), or environmental attributes to relying parties regardless of transmission method. The AP may be the original, authoritative source (e.g., an Applicant). The AP may also receive information from an authoritative source for repacking or store-and-forward (e.g., an employee database) to relying parties or they may derive the attributes from formulas (e.g., a credit score). Regardless of the source of the AP's attributes, the same standards should apply to determining the LOAA. As ABAC is implemented throughout government, attribute assurance will be a critical, limiting factor in its acceptance. With this presentation, we hope to encourage dialog between attribute relying parties, attribute providers, and federal agencies that will be defining standards for ABAC in the immediate future.

Sommer, R., Paxson, V..  2010.  Outside the Closed World: On Using Machine Learning for Network Intrusion Detection. Security and Privacy (SP), 2010 IEEE Symposium on. :305-316.

In network intrusion detection research, one popular strategy for finding attacks is monitoring a network's activity for anomalies: deviations from profiles of normality previously learned from benign traffic, typically identified using tools borrowed from the machine learning community. However, despite extensive academic research one finds a striking gap in terms of actual deployments of such systems: compared with other intrusion detection approaches, machine learning is rarely employed in operational "real world" settings. We examine the differences between the network intrusion detection problem and other areas where machine learning regularly finds much more success. Our main claim is that the task of finding attacks is fundamentally different from these other applications, making it significantly harder for the intrusion detection community to employ machine learning effectively. We support this claim by identifying challenges particular to network intrusion detection, and provide a set of guidelines meant to strengthen future research on anomaly detection.