Visible to the public Biblio

Filters: Keyword is Computer simulation  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Goli, Mehran, Drechsler, Rolf.  2019.  Scalable Simulation-Based Verification of SystemC-Based Virtual Prototypes. 2019 22nd Euromicro Conference on Digital System Design (DSD). :522–529.
Virtual Prototypes (VPs) at the Electronic System Level (ESL) written in SystemC language using its Transaction Level Modeling (TLM) framework are increasingly adopted by the semiconductor industry. The main reason is that VPs are much earlier available, and their simulation is orders of magnitude faster in comparison to the hardware models implemented at lower levels of abstraction (e.g. RTL). This leads designers to use VPs as reference models for an early design verification. Hence, the correctness assurance of these reference models (VPs) is critical as undetected faults may propagate to less abstract levels in the design process, increasing the fixing cost and effort. In this paper, we propose a novel simulation-based verification approach to automatically validate the simulation behavior of a given SystemC VP against both the TLM-2.0 rules and its specifications (i.e. functional and timing behavior of communications in the VP). The scalability and the efficiency of the proposed approach are demonstrated using an extensive set of experiments including a real-word VP.
Gorbenko, Y., Svatovskiy, I., Shevtsov, O..  2016.  Post-quantum message authentication cryptography based on error-correcting codes. 2016 Third International Scientific-Practical Conference Problems of Infocommunications Science and Technology (PIC S T). :51–54.

In this paper we analyse possibilities of application of post-quantum code based signature schemes for message authentication purposes. An error-correcting code based digital signature algorithm is presented. There also shown results of computer simulation for this algorithm in case of Reed-Solomon codes and the estimated efficiency of its software implementation. We consider perspectives of error-correcting codes for message authentication and outline further research directions.

Haque, Md Ariful, Shetty, Sachin, Krishnappa, Bheshaj.  2019.  ICS-CRAT: A Cyber Resilience Assessment Tool for Industrial Control Systems. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :273—281.

In this work, we use a subjective approach to compute cyber resilience metrics for industrial control systems. We utilize the extended form of the R4 resilience framework and span the metrics over physical, technical, and organizational domains of resilience. We develop a qualitative cyber resilience assessment tool using the framework and a subjective questionnaire method. We make sure the questionnaires are realistic, balanced, and pertinent to ICS by involving subject matter experts into the process and following security guidelines and standards practices. We provide detail mathematical explanation of the resilience computation procedure. We discuss several usages of the qualitative tool by generating simulation results. We provide a system architecture of the simulation engine and the validation of the tool. We think the qualitative simulation tool would give useful insights for industrial control systems' overall resilience assessment and security analysis.

Ma, Siyou, Feng, Gao, Yan, Yunqiang.  2019.  Study on Hybrid Collaborative Simulation Testing Method Towards CPS. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :51—56.

CPS is generally complex to study, analyze, and design, as an important means to ensure the correctness of design and implementation of CPS system, simulation test is difficult to fully test, verify and evaluate the components or subsystems in the CPS system due to the inconsistent development progress of the com-ponents or subsystems in the CPS system. To address this prob-lem, we designed a hybrid P2P based collaborative simulation test framework composed of full physical nodes, hardware in the loop(HIL) nodes and full digital nodes to simulate the compo-nents or subsystems in the CPS system of different development progress, based on the framework, we then proposed collabora-tive simulation control strategy comprising sliding window based clock synchronization, dynamic adaptive time advancement and multi-priority task scheduling with preemptive time threshold. Experiments showed that the hybrid collaborative simulation testing method proposed in this paper can fully test CPS more effectively.

Marcinkevicius, Povilas, Bagci, Ibrahim Ethem, Abdelazim, Nema M., Woodhead, Christopher S., Young, Robert J., Roedig, Utz.  2019.  Optically Interrogated Unique Object with Simulation Attack Prevention. 2019 Design, Automation Test in Europe Conference Exhibition (DATE). :198–203.
A Unique Object (UNO) is a physical object with unique characteristics that can be measured externally. The usually analogue measurement can be converted into a digital representation - a fingerprint - which uniquely identifies the object. For practical applications it is necessary that measurements can be performed without the need of specialist equipment or complex measurement setup. Furthermore, a UNO should be able to defeat simulation attacks; an attacker may replace the UNO with a device or system that produces the expected measurement. Recently a novel type of UNOs based on Quantum Dots (QDs) and exhibiting unique photo-luminescence properties has been proposed. The uniqueness of these UNOs is based on quantum effects that can be interrogated using a light source and a camera. The so called Quantum Confinement UNO (QCUNO) responds uniquely to different light excitation levels which is exploited for simulation attack protection, as opposed to focusing on features too small to reproduce and therefore difficult to measure. In this paper we describe methods for extraction of fingerprints from the QCUNO. We evaluate our proposed methods using 46 UNOs in a controlled setup. Focus of the evaluation are entropy, error resilience and the ability to detect simulation attacks.
Noureddine, M. A., Marturano, A., Keefe, K., Bashir, M., Sanders, W. H..  2017.  Accounting for the Human User in Predictive Security Models. 2017 IEEE 22nd Pacific Rim International Symposium on Dependable Computing (PRDC). :329–338.

Given the growing sophistication of cyber attacks, designing a perfectly secure system is not generally possible. Quantitative security metrics are thus needed to measure and compare the relative security of proposed security designs and policies. Since the investigation of security breaches has shown a strong impact of human errors, ignoring the human user in computing these metrics can lead to misleading results. Despite this, and although security researchers have long observed the impact of human behavior on system security, few improvements have been made in designing systems that are resilient to the uncertainties in how humans interact with a cyber system. In this work, we develop an approach for including models of user behavior, emanating from the fields of social sciences and psychology, in the modeling of systems intended to be secure. We then illustrate how one of these models, namely general deterrence theory, can be used to study the effectiveness of the password security requirements policy and the frequency of security audits in a typical organization. Finally, we discuss the many challenges that arise when adopting such a modeling approach, and then present our recommendations for future work.

Voronkov, Oleg Yu..  2019.  Synergetic Synthesis of the Hierarchical Control System of the “Flying Platform”. 2019 III International Conference on Control in Technical Systems (CTS). :23—26.
The work is devoted to the synthesis of an aircraft control system using a synergetic control theory. The paper contains a general description of the apparatus and its control system, a synthesis of control laws, and a computer simulation. The relevance of the work consists in the need to create a vertically take-off aircraft of the “flying platform” type in order to increase the efficiency of rescue operations in disaster zones where helicopters and other modern means can't cope with the task. The scientific novelty of the work consists in the application of synergetic approaches to the development of a hierarchical system for balancing the vehicle spatial position and to the coordinating energy-saving control of electric motors that receive energy from a turbine generator.