Visible to the public Biblio

Found 157 results

Filters: Keyword is Data security  [Clear All Filters]
2021-07-08
Kanchanadevi, P., Raja, Laxmi, Selvapandian, D., Dhanapal, R..  2020.  An Attribute Based Encryption Scheme with Dynamic Attributes Supporting in the Hybrid Cloud. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :271—273.
Cloud computing is the flexible platform to outsource the data from local server to commercial cloud. However cloud provides tremendous benefits to user, data privacy and data leakage reduce the attention of cloud. For protecting data privacy and reduce data leakage various techniques has to be implemented in cloud. There are various types of cloud environment, but we concentrate on Hybrid cloud. Hybrid cloud is nothing but combination of more than two or more cloud. Where critical operations are performed in private cloud and non critical operations are performed in public cloud. So, it has numerous advantages and criticality too. In this paper, we focus on data security through encryption scheme over Hybrid Cloud. There are various encryption schemes are close to us but it also have data security issues. To overcome these issues, Attribute Based Encryption Scheme with Dynamic Attributes Supporting (ABE-DAS) has proposed. Attribute based Encryption Scheme with Dynamic Attributes Supporting technique enhance the security of the data in hybrid cloud.
2021-06-30
Solomon Doss, J. Kingsleen, Kamalakkannan, S..  2020.  IoT System Accomplishment using BlockChain in Validating and Data Security with Cloud. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :60—64.
In a block channel IoT system, sensitive details can be leaked by means of the proof of work or address check, as data or application Validation data is applied on the blockchain. In this, the zero-knowledge evidence is applied to a smart metering system to show how to improve the anonymity of the blockchain for privacy safety without disclosing information as a public key. Within this article, a blockchain has been implemented to deter security risks such as data counterfeiting by utilizing intelligent meters. Zero-Knowledge Proof, an anonymity blockchain technology, has been implemented through block inquiry to prevent threats to security like personal information infringement. It was suggested that intelligent contracts would be used to avoid falsification of intelligent meter data and abuse of personal details.
Huang, Zhicai, Zhu, Huiqing.  2020.  Blockchain-based Data Security Management Mechanism for Power Terminals. 2020 International Wireless Communications and Mobile Computing (IWCMC). :191—194.
In order to solve the problem of data leakage and tampering in end-to-end power data security management, this paper proposes a Blockchain-based power terminal data security management model, which includes power terminals and Blockchain nodes. Among them, the power terminal is responsible for the collection of front-end substation data; the Blockchain node is responsible for data verification and data storage. Secondly, the data security management mechanism of power terminal based on Blockchain is proposed, including data aggregation, data encryption and transmission, signature verification for single Blockchain, aggregation signature for main Blockchain nodes, and intelligent contract storage. Finally, by applying the mechanism to the data storage process and data request process analysis, the data management mechanism proposed in this paper has a good application effect.
2021-06-28
Alshehri, Mohammed, Panda, Brajendra.  2020.  Minimizing Data Breach by a Malicious Fog Node within a Fog Federation. 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :36–43.
Fog computing was emerged as mini-clouds deployed close to the ground to reduce communication overhead and time latency between the cloud and end-users' devices. Because fog computing is an extension of cloud computing, it inherits the security and privacy issues cloud computing has faced. If a Fog Node (FN) serving end-devices goes rogue or becomes maliciously compromised, this would hinder individuals' and organizations' data security (e.g., Confidentiality, Integrity, and Availability). This paper presents a novel scheme based on the Ciphertext-Policy-Attribute-Based-Encryption (CP-ABE) and hashing cryptographic primitives to minimize the amount of data in danger of breach by rogue fog nodes with maintaining the fog computing services provided to end-users' devices. This scheme manages to oust rogue Fog Nodes (FNs) and to prevent them from violating end-users' data security while guarantying the features provided by the fog computing paradigm. We demonstrate our scheme's applicability and efficiency by carrying out performance analysis and analyzing its security, and communication overhead.
2021-06-01
Saigopal, Venkata Venugopal Rao Gudlur, Raju, Valliappan.  2020.  IIoT Digital Forensics and Major Security issues. 2020 International Conference on Computational Intelligence (ICCI). :233–236.
the significant area in the growing field of internet security and IIoT connectivity is the way that forensic investigators will conduct investigation process with devices connected to industrial sensors. This part of process is known as IIoT digital forensics and investigation. The main research on IIoT digital forensic investigation has been done, but the current investigation process has revealed and identified major security issues need to be addressed. In parallel, major security issues faced by traditional forensic investigators dealing with IIoT connectivity and data security. This paper address the issues of the challenges and major security issues identified by review conducted in the prospective and emphasizes on the aforementioned security and challenges.
2021-05-25
Zhang, ZhiShuo, Zhang, Wei, Qin, Zhiguang.  2020.  Multi-Authority CP-ABE with Dynamical Revocation in Space-Air-Ground Integrated Network. 2020 International Conference on Space-Air-Ground Computing (SAGC). :76–81.
Space-air-ground integrated network (SAGIN) is emerged as a versatile computing and traffic architecture in recent years. Though SAGIN brings many significant benefits for modern communication and computing services, there are many unprecedented challenges in SAGIN. The one critical challenge in SAGIN is the data security. In SAGIN, because the data will be stored in cleartext on cloud, the sensitive data may suffer from the illegal access by the unauthorized users even the untrusted cloud servers (CSs). Ciphertext-policy attribute-based encryption (CP-ABE), which is a type of attribute-based encryption (ABE), has been regarded as a promising solution to the critical challenge of the data security on cloud. But there are two main blemishes in traditional CP-ABE. The first one is that there is only one attribute authority (AA) in CP-ABE. If the single AA crashs down, the whole system will be shut down. The second one is that the AA cannot effectively manage the life cycle of the users’ private keys. If a user on longer has one attribute, the AA cannot revoke the user’s private key of this attribute. This means the user can still decrypt some ciphertexts using this invalid attribute. In this paper, to solve the two flaws mentioned above, we propose a multi-authority CP-ABE (MA-CP-ABE) scheme with the dynamical key revocation (DKR). Our key revocation supports both user revocation and attribute revocation. And the our revocation is time friendly. What’s more, by using our dynamically tag-based revocation algorithm, AAs can dynamically and directly re-enable or revoke the invalid attributes to users. Finally, by evaluating and implementing our scheme, we can observe that our scheme is more comprehensive and practical for cloud applications in SAGIN.
2021-04-27
Khalid, O., Senthilananthan, S..  2020.  A review of data analytics techniques for effective management of big data using IoT. 2020 5th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA). :1—10.
IoT and big data are energetic technology of the world for quite a time, and both of these have become a necessity. On the one side where IoT is used to connect different objectives via the internet, the big data means having a large number of the set of structured, unstructured, and semi-structured data. The device used for processing based on the tools used. These tools help provide meaningful information used for effective management in different domains. Some of the commonly faced issues with the inadequate about the technologies are related to data privacy, insufficient analytical capabilities, and this issue is faced by in different domains related to the big data. Data analytics tools help discover the pattern of data and consumer preferences which is resulting in better decision making for the organizations. The major part of this work is to review different types of data analytics techniques for the effective management of big data using IoT. For the effective management of the ABD solution collection, analysis and control are used as the components. Each of the ingredients is described to find an effective way to manage big data. These components are considered and used in the validation criteria. The solution of effective data management is a stage towards the management of big data in IoT devices which will help the user to understand different types of elements of data management.
Sidhu, H. J. Singh, Khanna, M. S..  2020.  Cloud's Transformative Involvement in Managing BIG-DATA ANALYTICS For Securing Data in Transit, Storage And Use: A Study. 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC). :297—302.

with the advent of Cloud Computing a new era of computing has come into existence. No doubt, there are numerous advantages associated with the Cloud Computing but, there is other side of the picture too. The challenges associated with it need a more promising reply as far as the security of data that is stored, in process and in transit is concerned. This paper put forth a cloud computing model that tries to answer the data security queries; we are talking about, in terms of the four cryptographic techniques namely Homomorphic Encryption (HE), Verifiable Computation (VC), Secure Multi-Party Computation (SMPC), Functional Encryption (FE). This paper takes into account the various cryptographic techniques to undertake cloud computing security issues. It also surveys these important (existing) cryptographic tools/techniques through a proposed Cloud computation model that can be used for Big Data applications. Further, these cryptographic tools are also taken into account in terms of CIA triad. Then, these tools/techniques are analyzed by comparing them on the basis of certain parameters of concern.

Syafalni, I., Fadhli, H., Utami, W., Dharma, G. S. A., Mulyawan, R., Sutisna, N., Adiono, T..  2020.  Cloud Security Implementation using Homomorphic Encryption. 2020 IEEE International Conference on Communication, Networks and Satellite (Comnetsat). :341—345.

With the advancement of computing and communication technologies, data transmission in the internet are getting bigger and faster. However, it is necessary to secure the data to prevent fraud and criminal over the internet. Furthermore, most of the data related to statistics requires to be analyzed securely such as weather data, health data, financial and other services. This paper presents an implementation of cloud security using homomorphic encryption for data analytic in the cloud. We apply the homomorphic encryption that allows the data to be processed without being decrypted. Experimental results show that, for the polynomial degree 26, 28, and 210, the total executions are 2.2 ms, 4.4 ms, 25 ms per data, respectively. The implementation is useful for big data security such as for environment, financial and hospital data analytics.

Sasubilli, S. M., Dubey, A. K., Kumar, A..  2020.  Hybrid security analysis based on intelligent adaptive learning in Big Data. 2020 International Conference on Advances in Computing and Communication Engineering (ICACCE). :1—5.

Big data provides a way to handle and analyze large amount of data or complex set. It provides a systematic extraction also. In this paper a hybrid security analysis based on intelligent adaptive learning in big data has been discussed with the current trends. This paper also explores the possibility of cloud computing collaboration with big data. The advantages along with the impact for the overall platform evaluation has been discussed with the traditional trends. It has been useful in the analysis and the exploration of future research. This discussion also covers the computational variability and the connotation in terms of data reliability, availability and management in big data with data security aspects.

Zhang, Z., Wang, F., Zhong, C., Ma, H..  2020.  Grid Terminal Data Security Management Mechanism Based On Master-Slave Blockchain. 2020 5th International Conference on Computer and Communication Systems (ICCCS). :67—70.

In order to design an end-to-end data security preservation mechanism, this paper first proposes a grid terminal data security management model based on master-slave Blockchain, including grid terminal, slave Blockchain, and main Blockchain. Among them, the grid terminal mainly completes data generation and data release, the receiving of data and the distributed signature of data are mainly completed from the slave Blockchain, and the main Blockchain mainly completes the intelligent storage of data. Secondly, the data security management mechanism of grid terminal based on master-slave Blockchain is designed, including data distribution process design, data receiving process design, data distributed signature design and data intelligent storage process design. Finally, taking the identity registration and data storage process of the grid terminal as an example, the workflow of the data security management mechanism of the grid terminal based on the master-slave Blockchain is described in detail.

Yang, H., Bai, Y., Zou, Z., Zhang, Q., Wang, B., Yang, R..  2020.  Research on Data Security Sharing Mechanism of Power Internet of Things Based on Blockchain. 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 9:2029—2032.

The rapid growth of power Internet of Things devices has led to traditional data security sharing mechanisms that are no longer suitable for attribute and permission management of massive devices. In response to this problem, this article proposes a blockchain-based data security sharing mechanism for the power Internet of Things, which reduces the risk of data leakage through decentralization in the architecture and promotes the integration of multiple information and methods.

2021-04-08
Bloch, M., Barros, J., Rodrigues, M. R. D., McLaughlin, S. W..  2008.  Wireless Information-Theoretic Security. IEEE Transactions on Information Theory. 54:2515–2534.
This paper considers the transmission of confidential data over wireless channels. Based on an information-theoretic formulation of the problem, in which two legitimates partners communicate over a quasi-static fading channel and an eavesdropper observes their transmissions through a second independent quasi-static fading channel, the important role of fading is characterized in terms of average secure communication rates and outage probability. Based on the insights from this analysis, a practical secure communication protocol is developed, which uses a four-step procedure to ensure wireless information-theoretic security: (i) common randomness via opportunistic transmission, (ii) message reconciliation, (iii) common key generation via privacy amplification, and (iv) message protection with a secret key. A reconciliation procedure based on multilevel coding and optimized low-density parity-check (LDPC) codes is introduced, which allows to achieve communication rates close to the fundamental security limits in several relevant instances. Finally, a set of metrics for assessing average secure key generation rates is established, and it is shown that the protocol is effective in secure key renewal-even in the presence of imperfect channel state information.
2021-03-22
Kellogg, M., Schäf, M., Tasiran, S., Ernst, M. D..  2020.  Continuous Compliance. 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE). :511–523.
Vendors who wish to provide software or services to large corporations and governments must often obtain numerous certificates of compliance. Each certificate asserts that the software satisfies a compliance regime, like SOC or the PCI DSS, to protect the privacy and security of sensitive data. The industry standard for obtaining a compliance certificate is an auditor manually auditing source code. This approach is expensive, error-prone, partial, and prone to regressions. We propose continuous compliance to guarantee that the codebase stays compliant on each code change using lightweight verification tools. Continuous compliance increases assurance and reduces costs. Continuous compliance is applicable to any source-code compliance requirement. To illustrate our approach, we built verification tools for five common audit controls related to data security: cryptographically unsafe algorithms must not be used, keys must be at least 256 bits long, credentials must not be hard-coded into program text, HTTPS must always be used instead of HTTP, and cloud data stores must not be world-readable. We evaluated our approach in three ways. (1) We applied our tools to over 5 million lines of open-source software. (2) We compared our tools to other publicly-available tools for detecting misuses of encryption on a previously-published benchmark, finding that only ours are suitable for continuous compliance. (3) We deployed a continuous compliance process at AWS, a large cloud-services company: we integrated verification tools into the compliance process (including auditors accepting their output as evidence) and ran them on over 68 million lines of code. Our tools and the data for the former two evaluations are publicly available.
Xu, P., Chen, L., Jiang, Y., Sun, Q., Chen, H..  2020.  Research on Sensitivity Audit Scheme of Encrypted Data in Power Business. 2020 IEEE International Conference on Energy Internet (ICEI). :6–10.

With the rapid progress of informatization construction in power business, data resource has become the basic strategic resource of the power industry and innovative element in power production. The security protection of data in power business is particularly important in the informatization construction of power business. In order to implement data security protection, transparent encryption is one of the fifteen key technical standards in the Construction Guideline of the Standard Network Data Security System. However, data storage in the encrypted state is bound to affect the security audit of data to a certain extent. Based on this problem, this paper proposes a scheme to audit the sensitivity of the power business data under the protection of encryption to achieve an efficient sensitivity audit of ciphertext data with the premise of not revealing the decryption key or data information. Through a security demonstration, this paper fully proves that this solution is secure under the known plaintext attacks.

2021-03-09
Anithaashri, T. P., Ravichandran, G..  2020.  Security Enhancement for the Network Amalgamation using Machine Learning Algorithm. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :411—416.

Accessing the secured data through the network is a major task in emerging technology. Data needs to be protected from the network vulnerabilities, malicious users, hackers, sniffers, intruders. The novel framework has been designed to provide high security in data transaction through computer network. The implant of network amalgamation in the recent trends, make the way in security enhancement in an efficient manner through the machine learning algorithm. In this system the usage of the biometric authenticity plays a vital role for unique approach. The novel mathematical approach is used in machine learning algorithms to solve these problems and provide the security enhancement. The result shows that the novel method has consistent improvement in enhancing the security of data transactions in the emerging technologies.

2021-03-04
Patil, A. P., Karkal, G., Wadhwa, J., Sawood, M., Reddy, K. Dhanush.  2020.  Design and Implementation of a Consensus Algorithm to build Zero Trust Model. 2020 IEEE 17th India Council International Conference (INDICON). :1—5.
Zero Trust Model ensures each node is responsible for the approval of the transaction before it gets committed. The data owners can track their data while it’s shared amongst the various data custodians ensuring data security. The consensus algorithm enables the users to trust the network as malicious nodes fail to get approval from all nodes, thereby causing the transaction to be aborted. The use case chosen to demonstrate the proposed consensus algorithm is the college placement system. The algorithm has been extended to implement a diversified, decentralized, automated placement system, wherein the data owner i.e. the student, maintains an immutable certificate vault and the student’s data has been validated by a verifier network i.e. the academic department and placement department. The data transfer from student to companies is recorded as transactions in the distributed ledger or blockchain allowing the data to be tracked by the student.
2021-02-22
Abdelaal, M., Karadeniz, M., Dürr, F., Rothermel, K..  2020.  liteNDN: QoS-Aware Packet Forwarding and Caching for Named Data Networks. 2020 IEEE 17th Annual Consumer Communications Networking Conference (CCNC). :1–9.
Recently, named data networking (NDN) has been introduced to connect the world of computing devices via naming data instead of their containers. Through this strategic change, NDN brings several new features to network communication, including in-network caching, multipath forwarding, built-in multicast, and data security. Despite these unique features of NDN networking, there exist plenty of opportunities for continuing developments, especially with packet forwarding and caching. In this context, we introduce liteNDN, a novel forwarding and caching strategy for NDN networks. liteNDN comprises a cooperative forwarding strategy through which NDN routers share their knowledge, i.e. data names and interfaces, to optimize their packet forwarding decisions. Subsequently, liteNDN leverages that knowledge to estimate the probability of each downstream path to swiftly retrieve the requested data. Additionally, liteNDN exploits heuristics, such as routing costs and data significance, to make proper decisions about caching normal as well as segmented packets. The proposed approach has been extensively evaluated in terms of the data retrieval latency, network utilization, and the cache hit rate. The results showed that liteNDN, compared to conventional NDN forwarding and caching strategies, achieves much less latency while reducing the unnecessary traffic and caching activities.
2021-02-15
Gladwin, S. J., Gowthami, P. Lakshmi.  2020.  Combined Cryptography and Steganography for Enhanced Security in Suboptimal Images. 2020 International Conference on Artificial Intelligence and Signal Processing (AISP). :1–5.
Technology has developed to a very great extent, and the use of smart systems has introduced an increasing threat to data security and privacy. Most of the applications are built-in unsecured operating systems, and so there is a growing threat to information cloning, forging tampering counterfeiting, etc.. This will lead to an un-compensatory loss for end-users particularly in banking applications and personal data in social media. A robust and effective algorithm based on elliptic curve cryptography combined with Hill cipher has been proposed to mitigate such threats and increase information security. In this method, ciphertext and DCT coefficients of an image, embedded into the base image based on LSB watermarking. The ciphertext is generated based on the Hill Cipher algorithm. Hill Cipher can, however, be easily broken and has weak security and to add complexity, Elliptic curve cryptography (ECC), is combined with Hill cipher. Based on the ECC algorithm, the key is produced, and this key is employed to generate ciphertext through the Hill cipher algorithm. This combination of both steganography and cryptography results in increased authority and ownership of the data for sub-optimal media applications. It is hard to extract the hidden data and the image without the proper key. The performance for hiding text and image into an image data have been analyzed for sub-optimal multimedia applications.
2021-02-08
Moussa, Y., Alexan, W..  2020.  Message Security Through AES and LSB Embedding in Edge Detected Pixels of 3D Images. 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES). :224—229.

This paper proposes an advanced scheme of message security in 3D cover images using multiple layers of security. Cryptography using AES-256 is implemented in the first layer. In the second layer, edge detection is applied. Finally, LSB steganography is executed in the third layer. The efficiency of the proposed scheme is measured using a number of performance metrics. For instance, mean square error (MSE), peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), mean absolute error (MAE) and entropy.

2021-02-01
Sendhil, R., Amuthan, A..  2020.  A Descriptive Study on Homomorphic Encryption Schemes for Enhancing Security in Fog Computing. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :738–743.
Nowadays, Fog Computing gets more attention due to its characteristics. Fog computing provides more advantages in related to apply with the latest technology. On the other hand, there is an issue about the data security over processing of data. Fog Computing encounters many security challenges like false data injection, violating privacy in edge devices and integrity of data, etc. An encryption scheme called Homomorphic Encryption (HME) technique is used to protect the data from the various security threats. This homomorphic encryption scheme allows doing manipulation over the encrypted data without decrypting it. This scheme can be implemented in many systems with various crypto-algorithms. This homomorphic encryption technique is mainly used to retain the privacy and to process the stored encrypted data on a remote server. This paper addresses the terminologies of Fog Computing, work flow and properties of the homomorphic encryption algorithm, followed by exploring the application of homomorphic encryption in various public key cryptosystems such as RSA and Pailier. It focuses on various homomorphic encryption schemes implemented by various researchers such as Brakerski-Gentry-Vaikuntanathan model, Improved Homomorphic Cryptosystem, Upgraded ElGamal based Algebric homomorphic encryption scheme, In-Direct rapid homomorphic encryption scheme which provides integrity of data.
2021-01-20
Li, M., Chang, H., Xiang, Y., An, D..  2020.  A Novel Anti-Collusion Audio Fingerprinting Scheme Based on Fourier Coefficients Reversing. IEEE Signal Processing Letters. 27:1794—1798.

Most anti-collusion audio fingerprinting schemes are aiming at finding colluders from the illegal redistributed audio copies. However, the loss caused by the redistributed versions is inevitable. In this letter, a novel fingerprinting scheme is proposed to eliminate the motivation of collusion attack. The audio signal is transformed to the frequency domain by the Fourier transform, and the coefficients in frequency domain are reversed in different degrees according to the fingerprint sequence. Different from other fingerprinting schemes, the coefficients of the host media are excessively modified by the proposed method in order to reduce the quality of the colluded version significantly, but the imperceptibility is well preserved. Experiments show that the colluded audio cannot be reused because of the poor quality. In addition, the proposed method can also resist other common attacks. Various kinds of copyright risks and losses caused by the illegal redistribution are effectively avoided, which is significant for protecting the copyright of audio.

2021-01-18
Singh, G., Garg, S..  2020.  Fuzzy Elliptic Curve Cryptography based Cipher Text Policy Attribute based Encryption for Cloud Security. 2020 International Conference on Intelligent Engineering and Management (ICIEM). :327–330.

Cipher Text Policy Attribute Based Encryption which is a form of Public Key Encryption has become a renowned approach as a Data access control scheme for data security and confidentiality. It not only provides the flexibility and scalability in the access control mechanisms but also enhances security by fuzzy fined-grained access control. However, schemes are there which for more security increases the key size which ultimately leads to high encryption and decryption time. Also, there is no provision for handling the middle man attacks during data transfer. In this paper, a light-weight and more scalable encryption mechanism is provided which not only uses fewer resources for encoding and decoding but also improves the security along with faster encryption and decryption time. Moreover, this scheme provides an efficient key sharing mechanism for providing secure transfer to avoid any man-in-the-middle attacks. Also, due to fuzzy policies inclusion, chances are there to get approximation of user attributes available which makes the process fast and reliable and improves the performance of legitimate users.

2021-01-11
Wang, W.-C., Ho, C.-C., Chang, Y.-M., Chang, Y.-H..  2020.  Challenges and Designs for Secure Deletion in Storage Systems. 2020 Indo – Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN). :181–189.
Data security has risen to be one of the most critical concerns of computer professionals. Tighter legal requirements now exist for the purpose of protecting user data from unauthorized uses and for both preserving and erasing/sanitizing data records to meet legal compliance requirements. To meet the data security requirement, many secure (data) deletion techniques have been proposed to deal with the data security concerns from different system layers. This paper surveys the state-of-the-art secure deletion techniques that have been designed to pursue higher efficiency, verifiability, and portability for emerging types of hard disk drives and flash-based solid-state drives. Meanwhile, the pros and cons of implementing secure deletion in different system layers are also discussed, so as to assist in pursuing better secure deletion designs for future storage systems.
2020-12-28
Riaz, S., Khan, A. H., Haroon, M., Latif, S., Bhatti, S..  2020.  Big Data Security and Privacy: Current Challenges and Future Research perspective in Cloud Environment. 2020 International Conference on Information Management and Technology (ICIMTech). :977—982.

Cloud computing is an Internet-based technology that emerging rapidly in the last few years due to popular and demanded services required by various institutions, organizations, and individuals. structured, unstructured, semistructured data is transfer at a record pace on to the cloud server. These institutions, businesses, and organizations are shifting more and more increasing workloads on cloud server, due to high cost, space and maintenance issues from big data, cloud computing will become a potential choice for the storage of data. In Cloud Environment, It is obvious that data is not secure completely yet from inside and outside attacks and intrusions because cloud servers are under the control of a third party. The Security of data becomes an important aspect due to the storage of sensitive data in a cloud environment. In this paper, we give an overview of characteristics and state of art of big data and data security & privacy top threats, open issues and current challenges and their impact on business are discussed for future research perspective and review & analysis of previous and recent frameworks and architectures for data security that are continuously established against threats to enhance how to keep and store data in the cloud environment.