Visible to the public Biblio

Filters: Keyword is 5G mobile communication  [Clear All Filters]
2021-07-07
Diamanti, Alessio, Vilchez, José Manuel Sanchez, Secci, Stefano.  2020.  LSTM-based radiography for anomaly detection in softwarized infrastructures. 2020 32nd International Teletraffic Congress (ITC 32). :28–36.
Legacy and novel network services are expected to be migrated and designed to be deployed in fully virtualized environments. Starting with 5G, NFV becomes a formally required brick in the specifications, for services integrated within the infrastructure provider networks. This evolution leads to deployment of virtual resources Virtual-Machine (VM)-based, container-based and/or server-less platforms, all calling for a deep virtualization of infrastructure components. Such a network softwarization also unleashes further logical network virtualization, easing multi-layered, multi-actor and multi-access services, so as to be able to fulfill high availability, security, privacy and resilience requirements. However, the derived increased components heterogeneity makes the detection and the characterization of anomalies difficult, hence the relationship between anomaly detection and corresponding reconfiguration of the NFV stack to mitigate anomalies. In this article we propose an unsupervised machine-learning data-driven approach based on Long-Short- Term-Memory (LSTM) autoencoders to detect and characterize anomalies in virtualized networking services. With a radiography visualization, this approach can spot and describe deviations from nominal parameter values of any virtualized network service by means of a lightweight and iterative mean-squared reconstruction error analysis of LSTM-based autoencoders. We implement and validate the proposed methodology through experimental tests on a vIMS proof-of-concept deployed using Kubernetes.
2021-06-24
Su, Yu, Zhou, Jian, Guo, Zhinuan.  2020.  A Trust-Based Security Scheme for 5G UAV Communication Systems. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :371—374.
As the increasing demands of social services, unmanned aerial vehicles (UAVs)-assisted networks promote the promising prospect for implementing high-rate information transmission and applications. The sensing data can be collected by UAVs, a large number of applications based on UAVs have been realized in the 5G networks. However, the malicious UAVs may provide false information and destroy the services. The 5G UAV communication systems face the security threats. Therefore, this paper develops a novel trust-based security scheme for 5G UAV communication systems. Firstly, the architecture of the 5G UAV communication system is presented to improve the communication performance. Secondly, the trust evaluation scheme for UAVs is developed to evaluate the reliability of UAVs. By introducing the trust threshold, the malicious UAVs will be filtered out from the systems to protect the security of systems. Finally, the simulation results have been demonstrated the effectiveness of the proposed scheme.
2021-03-30
Cheng, S.-T., Zhu, C.-Y., Hsu, C.-W., Shih, J.-S..  2020.  The Anomaly Detection Mechanism Using Extreme Learning Machine for Service Function Chaining. 2020 International Computer Symposium (ICS). :310—315.

The age of the wireless network already advances to the fifth generation (5G) era. With software-defined networking (SDN) and network function virtualization (NFV), various scenarios can be implemented in the 5G network. Cloud computing, for example, is one of the important application scenarios for implementing SDN/NFV solutions. The emerging container technologies, such as Docker, can provide more agile service provisioning than virtual machines can do in cloud environments. It is a trend that virtual network functions (VNFs) tend to be deployed in the form of containers. The services provided by clouds can be formed by service function chaining (SFC) consisting of containerized VNFs. Nevertheless, the challenges and limitation regarding SFCs are reported in the literature. Various network services are bound to rely heavily on these novel technologies, however, the development of related technologies often emphasizes functions and ignores security issues. One noticeable issue is the SFC integrity. In brief, SFC integrity concerns whether the paths that traffic flows really pass by and the ones of service chains that are predefined are consistent. In order to examine SFC integrity in the cloud-native environment of 5G network, we propose a framework that can be integrated with NFV management and orchestration (MANO) in this work. The core of this framework is the anomaly detection mechanism for SFC integrity. The learning algorithm of our mechanism is based on extreme learning machine (ELM). The proposed mechanism is evaluated by its performance such as the accuracy of our ELM model. This paper concludes with discussions and future research work.

2021-03-17
Lee, Y., Woo, S., Song, Y., Lee, J., Lee, D. H..  2020.  Practical Vulnerability-Information-Sharing Architecture for Automotive Security-Risk Analysis. IEEE Access. 8:120009—120018.
Emerging trends that are shaping the future of the automotive industry include electrification, autonomous driving, sharing, and connectivity, and these trends keep changing annually. Thus, the automotive industry is shifting from mechanical devices to electronic control devices, and is not moving to Internet of Things devices connected to 5G networks. Owing to the convergence of automobile-information and communication technology (ICT), the safety and convenience features of automobiles have improved significantly. However, cyberattacks that occur in the existing ICT environment and can occur in the upcoming 5G network are being replicated in the automobile environment. In a hyper-connected society where 5G networks are commercially available, automotive security is extremely important, as vehicles become the center of vehicle to everything (V2X) communication connected to everything around them. Designing, developing, and deploying information security techniques for vehicles require a systematic security-risk-assessment and management process throughout the vehicle's lifecycle. To do this, a security risk analysis (SRA) must be performed, which requires an analysis of cyber threats on automotive vehicles. In this study, we introduce a cyber kill chain-based cyberattack analysis method to create a formal vulnerability-analysis system. We can also analyze car-hacking studies that were conducted on real cars to identify the characteristics of the attack stages of existing car-hacking techniques and propose the minimum but essential measures for defense. Finally, we propose an automotive common-vulnerabilities-and-exposure system to manage and share evolving vehicle-related cyberattacks, threats, and vulnerabilities.
2021-03-16
Netalkar, P. P., Maheshwari, S., Raychaudhuri, D..  2020.  Evaluation of Network Assisted Handoffs in Heterogeneous Networks. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1—9.

This paper describes a novel distributed mobility management (DMM) scheme for the "named-object" information centric network (ICN) architecture in which the routers forward data based on unique identifiers which are dynamically mapped to the current network addresses of a device. The work proposes and evaluates two specific handover schemes namely, hard handoff with rebinding and soft handoff with multihoming intended to provide seamless data transfer with improved throughput during handovers. The evaluation of the proposed handover schemes using system simulation along with proof-of-concept implementation in ORBIT testbed is described. The proposed handoff and scheduling throughput gains are 12.5% and 44% respectively over multiple interfaces when compared to traditional IP network with equal share split scheme. The handover performance with respect to RTT and throughput demonstrate the benefits of clean slate network architecture for beyond 5G networks.

2021-03-15
Wang, F., Zhang, X..  2020.  Secure Resource Allocation for Polarization-Based Non-Linear Energy Harvesting Over 5G Cooperative Cognitive Radio Networks. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
We address secure resource allocation for the energy harvesting (EH) based 5G cooperative cognitive radio networks (CRNs). To guarantee that the size-limited secondary users (SUs) can simultaneously send the primary user's and their own information, we assume that SUs are equipped with orthogonally dual-polarized antennas (ODPAs). In particular, we propose, develop, and analyze an efficient resource allocation scheme under a practical non-linear EH model, which can capture the nonlinear characteristics of the end-to-end wireless power transfer (WPT) for radio frequency (RF) based EH circuits. Our obtained numerical results validate that a substantial performance gain can be obtained by employing the non-linear EH model.
Shekhawat, G. K., Yadav, R. P..  2020.  Sparse Code Multiple Access based Cooperative Spectrum Sensing in 5G Cognitive Radio Networks. 2020 5th International Conference on Computing, Communication and Security (ICCCS). :1–6.
Fifth-generation (5G) network demands of higher data rate, massive user connectivity and large spectrum can be achieve using Sparse Code Multiple Access (SCMA) scheme. The integration of cognitive feature spectrum sensing with SCMA can enhance the spectrum efficiency in a heavily dense 5G wireless network. In this paper, we have investigated the primary user detection performance using SCMA in Centralized Cooperative Spectrum Sensing (CCSS). The developed model can support massive user connectivity, lower latency and higher spectrum utilization for future 5G networks. The simulation study is performed for AWGN and Rayleigh fading channel. Log-MPA iterative receiver based Log-Likelihood Ratio (LLR) soft test statistic is passed to Fusion Center (FC). The Wald-hypothesis test is used at FC to finalize the PU decision.
2021-03-04
Carrozzo, G., Siddiqui, M. S., Betzler, A., Bonnet, J., Perez, G. M., Ramos, A., Subramanya, T..  2020.  AI-driven Zero-touch Operations, Security and Trust in Multi-operator 5G Networks: a Conceptual Architecture. 2020 European Conference on Networks and Communications (EuCNC). :254—258.
The 5G network solutions currently standardised and deployed do not yet enable the full potential of pervasive networking and computing envisioned in 5G initial visions: network services and slices with different QoS profiles do not span multiple operators; security, trust and automation is limited. The evolution of 5G towards a truly production-level stage needs to heavily rely on automated end-to-end network operations, use of distributed Artificial Intelligence (AI) for cognitive network orchestration and management and minimal manual interventions (zero-touch automation). All these elements are key to implement highly pervasive network infrastructures. Moreover, Distributed Ledger Technologies (DLT) can be adopted to implement distributed security and trust through Smart Contracts among multiple non-trusted parties. In this paper, we propose an initial concept of a zero-touch security and trust architecture for ubiquitous computing and connectivity in 5G networks. Our architecture aims at cross-domain security & trust orchestration mechanisms by coupling DLTs with AI-driven operations and service lifecycle automation in multi-tenant and multi-stakeholder environments. Three representative use cases are identified through which we will validate the work which will be validated in the test facilities at 5GBarcelona and 5TONIC/Madrid.
2021-02-23
Adat, V., Parsamehr, R., Politis, I., Tselios, C., Kotsopoulos, S..  2020.  Malicious user identification scheme for network coding enabled small cell environment. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—6.
Reliable communication over the wireless network with high throughput is a major target for the next generation communication technologies. Network coding can significantly improve the throughput efficiency of the network in a cooperative environment. The small cell technology and device to device communication make network coding an ideal candidate for improved performance in the fifth generation of communication networks. However, the security concerns associated with network coding needs to be addressed before any practical implementations. Pollution attacks are considered one of the most threatening attacks in the network coding environment. Although there are different integrity schemes to detect polluted packets, identifying the exact adversary in a network coding environment is a less addressed challenge. This paper proposes a scheme for identifying and locating adversaries in a dense, network coding enabled environment of mobile nodes. It also discusses a non-repudiation protocol that will prevent adversaries from deceiving the network.
Gaber, C., Vilchez, J. S., Gür, G., Chopin, M., Perrot, N., Grimault, J.-L., Wary, J.-P..  2020.  Liability-Aware Security Management for 5G. 2020 IEEE 3rd 5G World Forum (5GWF). :133—138.

Multi-party and multi-layer nature of 5G networks implies the inherent distribution of management and orchestration decisions across multiple entities. Therefore, responsibility for management decisions concerning end-to-end services become blurred if no efficient liability and accountability mechanism is used. In this paper, we present the design, building blocks and challenges of a Liability-Aware Security Management (LASM) system for 5G. We describe how existing security concepts such as manifests and Security-by-Contract, root cause analysis, remote attestation, proof of transit, and trust and reputation models can be composed and enhanced to take risk and responsibilities into account for security and liability management.

2021-02-16
Shi, Y., Sagduyu, Y. E., Erpek, T..  2020.  Reinforcement Learning for Dynamic Resource Optimization in 5G Radio Access Network Slicing. 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1—6.
The paper presents a reinforcement learning solution to dynamic resource allocation for 5G radio access network slicing. Available communication resources (frequency-time blocks and transmit powers) and computational resources (processor usage) are allocated to stochastic arrivals of network slice requests. Each request arrives with priority (weight), throughput, computational resource, and latency (deadline) requirements, and if feasible, it is served with available communication and computational resources allocated over its requested duration. As each decision of resource allocation makes some of the resources temporarily unavailable for future, the myopic solution that can optimize only the current resource allocation becomes ineffective for network slicing. Therefore, a Q-learning solution is presented to maximize the network utility in terms of the total weight of granted network slicing requests over a time horizon subject to communication and computational constraints. Results show that reinforcement learning provides major improvements in the 5G network utility relative to myopic, random, and first come first served solutions. While reinforcement learning sustains scalable performance as the number of served users increases, it can also be effectively used to assign resources to network slices when 5G needs to share the spectrum with incumbent users that may dynamically occupy some of the frequency-time blocks.
2021-02-10
Shang, F., Li, X., Zhai, D., Lu, Y., Zhang, D., Qian, Y..  2020.  On the Distributed Jamming System of Covert Timing Channels in 5G Networks. 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :1107—1111.
To build the fifth generation (5G) mobile network, the sharing structure in the 5G network adopted in industries has gained great research interesting. However, in this structure data are shared among diversity networks, which introduces the threaten of network security, such as covert timing channels. To eliminate the covert timing channel, we propose to inject noise into the covert timing channel. By analyzing the modulation method of covert timing channels, we design the jamming strategy on the covert channel. According to the strategy, the interference algorithm of the covert timing channel is designed. Since the interference algorithm depends heavily on the memory, we construct a distributing jammer. Experiments results show that these covert time channel can be blocked under the distributing jammer.
2020-12-15
Li, C., He, J., Liu, S., Guo, D., Song, L..  2020.  On Secrecy Key of a class of Secure Asymmetric Multilevel Diversity Coding System. 2020 IEEE International Symposium on Information Theory (ISIT). :879—883.
With the explosive development of big data, it is necessary to sort the data according to their importance or priorities. The sources with different importance levels can be modeled by the multilevel diversity coding systems (MDCS). Another trend in future communication networks, say 5G wireless networks and Internet of Things, is that users may obtain their data from all available sources, even from devices belonging to other users. Then, the privacy of data becomes a crucial issue. In a recent work by Li et al., the secure asymmetric MDCS (S-AMDCS) with wiretap channels was investigated, where the wiretapped messages do not leak any information about the sources (i.e. perfect secrecy). It was shown that superposition (source-separate coding) is not optimal for the general S-AMDCS and the exact full secure rate region was proved for a class of S-AMDCS. In addition, a bound on the key size of the secure rate region was provided as well. As a further step on the SAMDCS problem, this paper mainly focuses on the key size characterization. Specifically, the constraints on the key size of superposition secure rate region are proved and a counterexample is found to show that the bound on the key size of the exact secure rate region provided by Li et al. is not tight. In contrast, tight necessary and sufficient constraints on the secrecy key size of the counterexample, which is the four-encoder S-AMDCS, are proved.
2020-12-02
Sun, Z., Du, P., Nakao, A., Zhong, L., Onishi, R..  2019.  Building Dynamic Mapping with CUPS for Next Generation Automotive Edge Computing. 2019 IEEE 8th International Conference on Cloud Networking (CloudNet). :1—6.

With the development of IoT and 5G networks, the demand for the next-generation intelligent transportation system has been growing at a rapid pace. Dynamic mapping has been considered one of the key technologies to reduce traffic accidents and congestion in the intelligent transportation system. However, as the number of vehicles keeps growing, a huge volume of mapping traffic may overload the central cloud, leading to serious performance degradation. In this paper, we propose and prototype a CUPS (control and user plane separation)-based edge computing architecture for the dynamic mapping and quantify its benefits by prototyping. There are a couple of merits of our proposal: (i) we can mitigate the overhead of the networks and central cloud because we only need to abstract and send global dynamic mapping information from the edge servers to the central cloud; (ii) we can reduce the response latency since the dynamic mapping traffic can be isolated from other data traffic by being generated and distributed from a local edge server that is deployed closer to the vehicles than the central server in cloud. The capabilities of our system have been quantified. The experimental results have shown our system achieves throughput improvement by more than four times, and response latency reduction by 67.8% compared to the conventional central cloud-based approach. Although these results are still obtained from the preliminary evaluations using our prototype system, we believe that our proposed architecture gives insight into how we utilize CUPS and edge computing to enable efficient dynamic mapping applications.

2020-11-23
Kumari, K. A., Sadasivam, G. S., Gowri, S. S., Akash, S. A., Radhika, E. G..  2018.  An Approach for End-to-End (E2E) Security of 5G Applications. 2018 IEEE 4th International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing, (HPSC) and IEEE International Conference on Intelligent Data and Security (IDS). :133–138.
As 5G transitions from an industrial vision to a tangible, next-generation mobile technology, security remains key business driver. Heterogeneous environment, new networking paradigms and novel use cases makes 5G vulnerable to new security threats. This in turn necessitates a flexible and dependable security mechanism. End-to-End (E2E) data protection provides better security, avoids repeated security operations like encryption/decryption and provides differentiated security based on the services. E2E security deals with authentication, integrity, key management and confidentiality. The attack surface of a 5G system is larger as 5G aims for a heterogeneous networked society. Hence attack resistance needs to be a design consideration when defining new 5G protocols. This framework has been designed for accessing the manifold applications with high security and trust by offering E2E security for various services. The proposed framework is evaluated based on computation complexity, communication complexity, attack resistance rate and security defensive rate. The protocol is also evaluated for correctness, and resistance against passive, active and dictionary attacks using random oracle model and Automated Validation of Internet Security Protocols and Applications (AVISPA) tool.
2020-11-17
Hossain, M. S., Ramli, M. R., Lee, J. M., Kim, D.-S..  2019.  Fog Radio Access Networks in Internet of Battlefield Things (IoBT) and Load Balancing Technology. 2019 International Conference on Information and Communication Technology Convergence (ICTC). :750—754.

The recent trend of military is to combined Internet of Things (IoT) knowledge to their field for enhancing the impact in battlefield. That's why Internet of battlefield (IoBT) is our concern. This paper discusses how Fog Radio Access Network(F-RAN) can provide support for local computing in Industrial IoT and IoBT. F-RAN can play a vital role because of IoT devices are becoming popular and the fifth generation (5G) communication is also an emerging issue with ultra-low latency, energy consumption, bandwidth efficiency and wide range of coverage area. To overcome the disadvantages of cloud radio access networks (C-RAN) F-RAN can be introduced where a large number of F-RAN nodes can take part in joint distributed computing and content sharing scheme. The F-RAN in IoBT is effective for enhancing the computing ability with fog computing and edge computing at the network edge. Since the computing capability of the fog equipment are weak, to overcome the difficulties of fog computing in IoBT this paper illustrates some challenging issues and solutions to improve battlefield efficiency. Therefore, the distributed computing load balancing problem of the F-RAN is researched. The simulation result indicates that the load balancing strategy has better performance for F-RAN architecture in the battlefield.

2020-11-16
Belesioti, M., Makri, R., Fehling-Kaschek, M., Carli, M., Kostopoulos, A., Chochliouros, I. P., Neri, A., Frosali, F..  2019.  A New Security Approach in Telecom Infrastructures: The RESISTO Concept. 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS). :212–218.
Communications play a fundamental role in the economic and social well-being of the citizens and on operations of most of the critical infrastructures (CIs). Extreme weather events, natural disasters and criminal attacks represent a challenge due to their increase in frequency and intensity requiring smarter resilience of the Communication CIs, which are extremely vulnerable due to the ever-increasing complexity of the architecture also in light of the evolution towards 5G, the extensive use of programmable platforms and exponential growth of connected devices. In this paper, we present the aim of RESISTO H2020 EU-funded project, which constitutes an innovative solution for Communication CIs holistic situation awareness and enhanced resilience.
Gupta, S., Parne, B. L., Chaudhari, N. S..  2018.  Security Vulnerabilities in Handover Authentication Mechanism of 5G Network. 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC). :369–374.
The main objective of the Third Generation Partnership Project (3GPP) is to fulfill the increasing security demands of IoT-based applications with the evolution of Fifth Generation (5G) mobile telecommunication technology. In June 2018, the 3GPP has published the study report of the handover architecture and security functions of in 5G communication network. In this paper, we discuss the 5G handover key mechanism with its key hierarchy. In addition, the inter-gNB handover authentication mechanism in 5G communication network is analyzed and identify the security vulnerabilities such as false base-station attack, de-synchronization attack, key compromise, etc. In addition, the handover mechanism suffers from authentication complexity due to high signaling overhead. To overcome these problems, we recommend some countermeasures as pre-authentication of communication entities, delegation of authentication and predistribution of secret keys. This is first work in the 5G handover security analysis. We anticipate that the above security issues and key resilience problem can be avoided from the proposed solutions.
2020-10-05
Chen, Jen-Jee, Tsai, Meng-Hsun, Zhao, Liqiang, Chang, Wei-Chiao, Lin, Yu-Hsiang, Zhou, Qianwen, Lu, Yu-Zhang, Tsai, Jia-Ling, Cai, Yun-Zhan.  2019.  Realizing Dynamic Network Slice Resource Management based on SDN networks. 2019 International Conference on Intelligent Computing and its Emerging Applications (ICEA). :120–125.
It is expected that the concept of Internet of everything will be realized in 2020 because of the coming of the 5G wireless communication technology. Internet of Things (IoT) services in various fields require different types of network service features, such as mobility, security, bandwidth, latency, reliability and control strategies. In order to solve the complex requirements and provide customized services, a new network architecture is needed. To change the traditional control mode used in the traditional network architecture, the Software Defined Network (SDN) is proposed. First, SDN divides the network into the Control Plane and Data Plane and then delegates the network management authority to the controller of the control layer. This allows centralized control of connections of a large number of devices. Second, SDN can help realizing the network slicing in the aspect of network layer. With the network slicing technology proposed by 5G, it can cut the 5G network out of multiple virtual networks and each virtual network is to support the needs of diverse users. In this work, we design and develop a network slicing framework. The contributions of this article are two folds. First, through SDN technology, we develop to provide the corresponding end-to-end (E2E) network slicing for IoT applications with different requirements. Second, we develop a dynamic network slice resource scheduling and management method based on SDN to meet the services' requirements with time-varying characteristics. This is usually observed in streaming and services with bursty traffic. A prototyping system is completed. The effectiveness of the system is demonstrated by using an electronic fence application as a use case.
2020-09-21
Xia, Huiyun, Han, Shuai, Li, Cheng, Meng, Weixiao.  2019.  Joint PHY/MAC Layer AN-Assisted Security Scheme in SVD-Based MIMO HARQ system. 2019 IEEE/CIC International Conference on Communications in China (ICCC). :328–333.
With the explosive data growth arise from internet of things, how to ensure information security is facing unprecedented challenges. In this paper, a joint PHY/MAC layer security scheme with artificial noise design in singular value decomposition (SVD) based multiple input multiple output hybrid automatic retransmission request (MIMO HARQ) system is proposed to resolve the problem of low data rates in existing cross-layer security design and further adapt to the high data rate requirement of 5G. First, the SVD was applied to simplify MIMO systems into several parallel sub-channels employing HARQ protocol. Then, different from traditional null space based artificial noise design, the artificial noise design, which is dependent on the characteristics of channel states and transmission rounds, is detailed presented. Finally, the analytical and simulation results proved that with the help of the proposed artificial noise, both the information security and data rate performance can be significantly improved compared with that in single input single output (SISO) system.
2020-09-18
Simpson, Oluyomi, Sun, Yichuang.  2019.  A Stochastic based Physical Layer Security in Cognitive Radio Networks: Cognitive Relay to Fusion Center. 2019 IEEE 38th International Performance Computing and Communications Conference (IPCCC). :1—7.
Cognitive radio networks (CRNs) are found to be, without difficulty wide-open to external malicious threats. Secure communication is an important prerequisite for forthcoming fifth-generation (5G) systems, and CRs are not exempt. A framework for developing the accomplishable benefits of physical layer security (PLS) in an amplify-and-forward cooperative spectrum sensing (AF-CSS) in a cognitive radio network (CRN) using a stochastic geometry is proposed. In the CRN the spectrum sensing data from secondary users (SU) are collected by a fusion center (FC) with the assistance of access points (AP) as cognitive relays, and when malicious eavesdropping SU are listening. In this paper we focus on the secure transmission of active APs relaying their spectrum sensing data to the FC. Closed expressions for the average secrecy rate are presented. Analytical formulations and results substantiate our analysis and demonstrate that multiple antennas at the APs is capable of improving the security of an AF-CSSCRN. The obtained numerical results also show that increasing the number of FCs, leads to an increase in the secrecy rate between the AP and its correlated FC.
2020-09-08
Perello, Jordi, Lopez, Albert, Careglio, Davide.  2019.  Experimenting with Real Application-specific QoS Guarantees in a Large-scale RINA Demonstrator. 2019 22nd Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN). :31–36.
This paper reports the definition, setup and obtained results of the Fed4FIRE + medium experiment ERASER, aimed to evaluate the actual Quality of Service (QoS) guarantees that the clean-slate Recursive InterNetwork Architecture (RINA) can deliver to heterogeneous applications at large-scale. To this goal, a 37-Node 5G metro/regional RINA network scenario, spanning from the end-user to the server where applications run in a datacenter has been configured in the Virtual Wall experimentation facility. This scenario has initially been loaded with synthetic application traffic flows, with diverse QoS requirements, thus reproducing different network load conditions. Next,their experienced QoS metrics end-to-end have been measured with two different QTA-Mux (i.e., the most accepted candidate scheduling policy for providing RINA with its QoS support) deployment scenarios. Moreover, on this RINA network scenario loaded with synthetic application traffic flows, a real HD (1080p) video streaming demonstration has also been conducted, setting up video streaming sessions to end-users at different network locations, illustrating the perceived Quality of Experience (QoE). Obtained results in ERASER disclose that, by appropriately deploying and configuring QTA-Mux, RINA can yield effective QoS support, which has provided perfect QoE in almost all locations in our demo when assigning video traffic flows the highest (i.e., Gold) QoS Cube.
Yang, Bowen, Chen, Xiang, Xie, Jinsen, Li, Sugang, Zhang, Yanyong, Yang, Jian.  2019.  Multicast Design for the MobilityFirst Future Internet Architecture. 2019 International Conference on Computing, Networking and Communications (ICNC). :88–93.
With the advent of fifth generation (5G) network and increasingly powerful mobile devices, people can conveniently obtain network resources wherever they are and whenever they want. However, the problem of mobility support in current network has not been adequately solved yet, especially in inter-domain mobile scenario, which leads to poor experience for mobile consumers. MobilityFirst is a clean slate future Internet architecture which adopts a clean separation between identity and network location. It provides new mechanisms to address the challenge of wireless access and mobility at scale. However, MobilityFirst lacks effective ways to deal with multicast service over mobile networks. In this paper, we design an efficient multicast mechanism based on MobilityFirst architecture and present the deployment in current network at scale. Furthermore, we propose a hierarchical multicast packet header with additional destinations to achieve low-cost dynamic multicast routing and provide solutions for both the multicast source and the multicast group members moving in intra- or inter-domain. Finally, we deploy a multicast prototype system to evaluate the performance of the proposed multicast mechanism.
Mufassa, Fauzil Halim, Anwar, Khoirul.  2019.  Extrinsic Information Transfer (EXIT) Analysis for Short Polar Codes. 2019 Symposium on Future Telecommunication Technologies (SOFTT). 1:1–6.

Ze the quality of channels into either completely noisy or noieseless channels. This paper presents extrinsic information transfer (EXIT) analysis for iterative decoding of Polar codes to reveal the mechanism of channel transformation. The purpose of understanding the transformation process are to comprehend the placement process of information bit and frozen bit and to comprehend the security standard of Polar codes. Mutual information derived based on the concept of EXIT chart for check nodes and variable nodes of low density parity check (LDPC) codes and applied to Polar codes. This paper explores the quality of the polarized channels in finite blocklength. The finite block-length is of our interest since in the fifth telecommunications generation (5G) the block length is limited. This paper reveals the EXIT curve changes of Polar codes and explores the polarization characteristics, thus, high value of mutual informations for frozen bit are needed to be detectable. If it is the other way, the error correction capability of Polar codes would be drastically decreases. These results are expected to be a reference for developments of Polar codes for 5G technologies and beyond.

2020-08-28
Brewer, John N., Dimitoglou, George.  2019.  Evaluation of Attack Vectors and Risks in Automobiles and Road Infrastructure. 2019 International Conference on Computational Science and Computational Intelligence (CSCI). :84—89.

The evolution of smart automobiles and vehicles within the Internet of Things (IoT) - particularly as that evolution leads toward a proliferation of completely autonomous vehicles - has sparked considerable interest in the subject of vehicle/automotive security. While the attack surface is wide, there are patterns of exploitable vulnerabilities. In this study we reviewed, classified according to their attack surface and evaluated some of the common vehicle and infrastructure attack vectors identified in the literature. To remediate these attack vectors, specific technical recommendations have been provided as a way towards secure deployments of smart automobiles and transportation infrastructures.