Visible to the public Biblio

Filters: Keyword is Load modeling  [Clear All Filters]
2021-11-08
Zhu, Huifeng, Guo, Xiaolong, Jin, Yier, Zhang, Xuan.  2020.  PowerScout: A Security-Oriented Power Delivery Network Modeling Framework for Cross-Domain Side-Channel Analysis. 2020 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1–6.
The growing complexity of modern electronic systems often leads to the design of more sophisticated power delivery networks (PDNs). Similar to other system-level shared resources, the on-board PDN unintentionally introduces side channels across design layers and voltage domains, despite the fact that PDNs are not part of the functional design. Recent work have demonstrated that exploitation of the side channel can compromise the system security (i.e. information leakage and fault injection). In this work, we systematically investigate the PDN-based side channel as well as the countermeasures. To facilitate our goal, we develop PowerScout, a security-oriented PDN simulation framework that unifies the modeling of different PDN-based side-channel attacks. PowerScout performs fast nodal analysis of complex PDNs at the system level to quantitatively evaluate the severity of side-channel vulnerabilities. With the support of PowerScout, for the first time, we validate PDN side-channel attacks in literature through simulation results. Further, we are able to quantitatively measure the security impact of PDN parameters and configurations. For example, towards information leakage, removing near-chip capacitors can increase intra-chip information leakage by a maximum of 23.23dB at mid-frequency and inter-chip leakage by an average of 31.68dB at mid- and high-frequencies. Similarly, the optimal toggling frequency and duty cycle are derived to achieve fault injection attacks with higher success rate and more precise control.
2021-09-16
Sarker, Partha S., Singh Saini, Amandeep, Sajan, K S, Srivastava, Anurag K..  2020.  CP-SAM: Cyber-Power Security Assessment and Resiliency Analysis Tool for Distribution System. 2020 Resilience Week (RWS). :188–193.
Cyber-power resiliency analysis of the distribution system is becoming critical with increase in adverse cyberevents. Distribution network operators need to assess and analyze the resiliency of the system utilizing the analytical tool with a carefully designed visualization and be driven by data and model-based analytics. This work introduces the Cyber-Physical Security Assessment Metric (CP-SAM) visualization tool to assist operators in ensuring the energy supply to critical loads during or after a cyber-attack. CP-SAM also provides decision support to operators utilizing measurement data and distribution power grid model and through well-designed visualization. The paper discusses the concepts of cyber-physical resiliency, software design considerations, open-source software components, and use cases for the tool to demonstrate the implementation and importance of the developed tool.
2021-09-07
Liu, Shu, Tao, Xingyu, Hu, Wenmin.  2020.  Planning Method of Transportation and Power Coupled System Based on Road Expansion Model. 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA). :361–366.
In this paper, a planning method of transportation-power coupled system based on road expansion model is proposed. First of all, based on the Wardrop equilibrium state, the traffic flow is distributed, to build the road expansion model and complete the traffic network modeling. It is assumed that the road charging demand is directly proportional to the road traffic flow, and the charging facilities will cause a certain degree of congestion on the road. This mutual influence relationship to establish a coupling system of transportation network and power network is used for the planning. In the planning method, the decision variables include the location of charging facilities, the setting of energy storage systems and the road expansion scheme. The planning goal is to minimize the investment cost and operation cost. The CPLEX solver is used to solve the mixed integer nonlinear programming problem. Finally, the simulation analysis is carried out to verify the validity and feasibility of the planning method, which can comprehensively consider the road expansion cost and travel time cost, taking a coupled system of 5-node traffic system and IEEE14 node distribution network as example.
Mueller, Felicitas, Hentschel, Paul, de Jongh, Steven, Held, Lukas, Suriyah, Michael, Leibried, Thomas.  2020.  Congestion Management of the German Transmission Grid through Sector Coupling: A Modeling Approach. 2020 55th International Universities Power Engineering Conference (UPEC). :1–6.
The progressive expansion of renewable energies, especially wind power plants being promoted in Germany as part of the energy transition, places new demands on the transmission grid. As an alternative to grid expansion, sector coupling of the gas and electricity sector through Power-to-Gas (PtG) technology is seen as a great opportunity to make the energy transmission more flexible and reliable in the future as well as make use of already existing gas infrastructure. In this paper, PtG plants are dimensioned and placed in a model of the German transmission grid. Time series based load flow calculations are performed allowing conclusions about the line loading for the exemplary year 2016.
2021-06-30
Wang, Zhaoyuan, Wang, Dan, Duan, Qing, Sha, Guanglin, Ma, Chunyan, Zhao, Caihong.  2020.  Missing Load Situation Reconstruction Based on Generative Adversarial Networks. 2020 IEEE/IAS Industrial and Commercial Power System Asia (I CPS Asia). :1528—1534.
The completion and the correction of measurement data are the foundation of the ubiquitous power internet of things construction. However, data missing may occur during the data transporting process. Therefore, a model of missing load situation reconstruction based on the generative adversarial networks is proposed in this paper to overcome the disadvantage of depending on data of other relevant factors in conventional methods. Through the unsupervised training, the proposed model can automatically learn the complex features of loads that are difficult to model explicitly to fill the incomplete load data without using other relevant data. Meanwhile, a method of online correction is put forward to improve the robustness of the reconstruction model in different scenarios. The proposed method is fully data-driven and contains no explicit modeling process. The test results indicate that the proposed algorithm is well-matched for the various scenarios, including the discontinuous missing load reconstruction and the continuous missing load reconstruction even massive data missing. Specifically, the reconstruction error rate of the proposed algorithm is within 4% under the absence of 50% load data.
2021-06-02
Scarabaggio, Paolo, Carli, Raffaele, Dotoli, Mariagrazia.  2020.  A game-theoretic control approach for the optimal energy storage under power flow constraints in distribution networks. 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE). :1281—1286.
Traditionally, the management of power distribution networks relies on the centralized implementation of the optimal power flow and, in particular, the minimization of the generation cost and transmission losses. Nevertheless, the increasing penetration of both renewable energy sources and independent players such as ancillary service providers in modern networks have made this centralized framework inadequate. Against this background, we propose a noncooperative game-theoretic framework for optimally controlling energy storage systems (ESSs) in power distribution networks. Specifically, in this paper we address a power grid model that comprehends traditional loads, distributed generation sources and several independent energy storage providers, each owning an individual ESS. Through a rolling-horizon approach, the latter participate in the grid optimization process, aiming both at increasing the penetration of distributed generation and leveling the power injection from the transmission grid. Our framework incorporates not only economic factors but also grid stability aspects, including the power flow constraints. The paper fully describes the distribution grid model as well as the underlying market hypotheses and policies needed to force the energy storage providers to find a feasible equilibrium for the network. Numerical experiments based on the IEEE 33-bus system confirm the effectiveness and resiliency of the proposed framework.
2021-05-25
Siritoglou, Petros, Oriti, Giovanna.  2020.  Distributed Energy Resources Design Method to Improve Energy Security in Critical Facilities. 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe). :1–6.

This paper presents a user-friendly design method for accurately sizing the distributed energy resources of a stand-alone microgrid to meet the critical load demands of a military, commercial, industrial, or residential facility when the utility power is not available. The microgrid combines renewable resources such as photovoltaics (PV) with an energy storage system to increase energy security for facilities with critical loads. The design tool's novelty includes compliance with IEEE standards 1562 and 1013 and addresses resilience, which is not taken into account in existing design methods. Several case studies, simulated with a physics-based model, validate the proposed design method. Additionally, the design and the simulations were validated by 24-hour laboratory experiments conducted on a microgrid assembled using commercial off the shelf components.

2021-05-20
Neema, Himanshu, Sztipanovits, Janos, Hess, David J., Lee, Dasom.  2020.  TE-SAT: Transactive Energy Simulation and Analysis Toolsuite. 2020 IEEE Workshop on Design Automation for CPS and IoT (DESTION). :19—20.

Transactive Energy (TE) is an emerging discipline that utilizes economic and control techniques for operating and managing the power grid effectively. Distributed Energy Resources (DERs) represent a fundamental shift away from traditionally centrally managed energy generation and storage to one that is rather distributed. However, integrating and managing DERs into the power grid is highly challenging owing to the TE implementation issues such as privacy, equity, efficiency, reliability, and security. The TE market structures allow utilities to transact (i.e., buy and sell) power services (production, distribution, and storage) from/to DER providers integrated as part of the grid. Flexible power pricing in TE enables power services transactions to dynamically adjust power generation and storage in a way that continuously balances power supply and demand as well as minimize cost of grid operations. Therefore, it has become important to analyze various market models utilized in different TE applications for their impact on above implementation issues.In this demo, we show-case the Transactive Energy Simulation and Analysis Toolsuite (TE-SAT) with its three publicly available design studios for experimenting with TE markets. All three design studios are built using metamodeling tool called the Web-based Graphical Modeling Environment (WebGME). Using a Git-like storage and tracking backend server, WebGME enables multi-user editing on models and experiments using simply a web-browser. This directly facilitates collaboration among different TE stakeholders for developing and analyzing grid operations and market models. Additionally, these design studios provide an integrated and scalable cloud backend for running corresponding simulation experiments.

2021-05-18
Niloy, Nishat Tasnim, Islam, Md. Shariful.  2020.  IntellCache: An Intelligent Web Caching Scheme for Multimedia Contents. 2020 Joint 9th International Conference on Informatics, Electronics Vision (ICIEV) and 2020 4th International Conference on Imaging, Vision Pattern Recognition (icIVPR). :1–6.
The traditional reactive web caching system is getting less popular day by day due to its inefficiency in handling the overwhelming requests for multimedia content. An intelligent web caching system intends to take optimal cache decisions by predicting future popular contents (FPC) proactively. In recent years, a few approaches have proposed some intelligent caching system where they were concerned about proactive caching. Those works intensified the importance of FPC prediction using the prediction models. However, only FPC prediction may not help to get the optimal solution in every scenario. In this paper, a technique named IntellCache has been proposed that increases the caching efficiency by taking a cache decision i.e. content storing decision before storing the predicted FPC. Different deep learning models such as- multilayer perceptron (MLP), Long short-term memory (LSTM) of Recurrent Neural Network (RNN) and ConvLSTM a combination of LSTM and Convolutional Neural Network (CNN) are compared to identify the most efficient model for FPC. The information on the contents of 18 years from the MovieLens data repository has been mined to evaluate the proposed approach. Results show that this proposed scheme outperforms previous solutions by achieving a higher cache hit ratio and lower average delay and thus, ensures users' satisfaction.
2021-05-05
Ulrich, Jacob, McJunkin, Timothy, Rieger, Craig, Runyon, Michael.  2020.  Scalable, Physical Effects Measurable Microgrid for Cyber Resilience Analysis (SPEMMCRA). 2020 Resilience Week (RWS). :194—201.

The ability to advance the state of the art in automated cybersecurity protections for industrial control systems (ICS) has as a prerequisite of understanding the trade-off space. That is, to enable a cyber feedback loop in a control system environment you must first consider both the security mitigation available, the benefits and the impacts to the control system functionality when the mitigation is used. More damaging impacts could be precipitated that the mitigation was intended to rectify. This paper details networked ICS that controls a simulation of the frequency response represented with the swing equation. The microgrid loads and base generation can be balanced through the control of an emulated battery and power inverter. The simulated plant, which is implemented in Raspberry Pi computers, provides an inexpensive platform to realize the physical effects of cyber attacks to show the trade-offs of available mitigating actions. This network design can include a commercial ICS controller and simple plant or emulated plant to introduce real world implementation of feedback controls, and provides a scalable, physical effects measurable microgrid for cyber resilience analysis (SPEMMCRA).

2021-04-08
Yaseen, Q., Panda, B..  2012.  Tackling Insider Threat in Cloud Relational Databases. 2012 IEEE Fifth International Conference on Utility and Cloud Computing. :215—218.
Cloud security is one of the major issues that worry individuals and organizations about cloud computing. Therefore, defending cloud systems against attacks such asinsiders' attacks has become a key demand. This paper investigates insider threat in cloud relational database systems(cloud RDMS). It discusses some vulnerabilities in cloud computing structures that may enable insiders to launch attacks, and shows how load balancing across multiple availability zones may facilitate insider threat. To prevent such a threat, the paper suggests three models, which are Peer-to-Peer model, Centralized model and Mobile-Knowledgebase model, and addresses the conditions under which they work well.
Yamaguchi, A., Mizuno, O..  2020.  Reducing Processing Delay and Node Load Using Push-Based Information-Centric Networking. 2020 3rd World Symposium on Communication Engineering (WSCE). :59–63.
Information-Centric Networking (ICN) is attracting attention as a content distribution method against increasing network traffic. Content distribution in ICN adopts a pull-type communication method that returns data to Interest. However, in this case, the push-type communication method is advantageous. Therefore, the authors have proposed a method in which a server pushes content to reduce the node load in an environment where a large amount of Interest to specific content occurs in a short time. In this paper, we analyze the packet processing delay time with and without the proposed method in an environment where a router processes a large number of packets using a simulator. Simulation results show that the proposed method can reduce packet processing delay time and node load.
Nasir, N. A., Jeong, S.-H..  2020.  Testbed-based Performance Evaluation of the Information-Centric Network. 2020 International Conference on Information and Communication Technology Convergence (ICTC). :166–169.
Proliferation of the Internet usage is rapidly increasing, and it is necessary to support the performance requirements for multimedia applications, including lower latency, improved security, faster content retrieval, and adjustability to the traffic load. Nevertheless, because the current Internet architecture is a host-oriented one, it often fails to support the necessary demands such as fast content delivery. A promising networking paradigm called Information-Centric Networking (ICN) focuses on the name of the content itself rather than the location of that content. A distinguished alternative to this ICN concept is Content-Centric Networking (CCN) that exploits more of the performance requirements by using in-network caching and outperforms the current Internet in terms of content transfer time, traffic load control, mobility support, and efficient network management. In this paper, instead of using the saturated method of validating a theory by simulation, we present a testbed-based performance evaluation of the ICN network. We used several new functions of the proposed testbed to improve the performance of the basic CCN. In this paper, we also show that the proposed testbed architecture performs better in terms of content delivery time compared to the basic CCN architecture through graphical results.
2021-02-16
Jin, Z., Yu, P., Guo, S. Y., Feng, L., Zhou, F., Tao, M., Li, W., Qiu, X., Shi, L..  2020.  Cyber-Physical Risk Driven Routing Planning with Deep Reinforcement-Learning in Smart Grid Communication Networks. 2020 International Wireless Communications and Mobile Computing (IWCMC). :1278—1283.
In modern grid systems which is a typical cyber-physical System (CPS), information space and physical space are closely related. Once the communication link is interrupted, it will make a great damage to the power system. If the service path is too concentrated, the risk will be greatly increased. In order to solve this problem, this paper constructs a route planning algorithm that combines node load pressure, link load balance and service delay risk. At present, the existing intelligent algorithms are easy to fall into the local optimal value, so we chooses the deep reinforcement learning algorithm (DRL). Firstly, we build a risk assessment model. The node risk assessment index is established by using the node load pressure, and then the link risk assessment index is established by using the average service communication delay and link balance degree. The route planning problem is then solved by a route planning algorithm based on DRL. Finally, experiments are carried out in a simulation scenario of a power grid system. The results show that our method can find a lower risk path than the original Dijkstra algorithm and the Constraint-Dijkstra algorithm.
2021-02-08
Liu, S., Kosuru, R., Mugombozi, C. F..  2020.  A Moving Target Approach for Securing Secondary Frequency Control in Microgrids. 2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). :1–6.
Microgrids' dependency on communication links exposes the control systems to cyber attack threats. In this work, instead of designing reactive defense approaches, a proacitve moving target defense mechanism is proposed for securing microgrid secondary frequency control from denial of service (DoS) attack. The sensor data is transmitted by following a Markov process, not in a deterministic way. This uncertainty will increase the difficulty for attacker's decision making and thus significantly reduce the attack space. As the system parameters are constantly changing, a gain scheduling based secondary frequency controller is designed to sustain the system performance. Case studies of a microgrid with four inverter-based DGs show the proposed moving target mechanism can enhance the resiliency of the microgrid control systems against DoS attacks.
2021-02-03
Lee, J..  2020.  CanvasMirror: Secure Integration of Third-Party Libraries in a WebVR Environment. 2020 50th Annual IEEE-IFIP International Conference on Dependable Systems and Networks-Supplemental Volume (DSN-S). :75—76.

Web technology has evolved to offer 360-degree immersive browsing experiences. This new technology, called WebVR, enables virtual reality by rendering a three-dimensional world on an HTML canvas. Unfortunately, there exists no browser-supported way of sharing this canvas between different parties. As a result, third-party library providers with ill intent (e.g., stealing sensitive information from end-users) can easily distort the entire WebVR site. To mitigate the new threats posed in WebVR, we propose CanvasMirror, which allows publishers to specify the behaviors of third-party libraries and enforce this specification. We show that CanvasMirror effectively separates the third-party context from the host origin by leveraging the privilege separation technique and safely integrates VR contents on a shared canvas.

2020-12-02
Wang, C., Huang, N., Sun, L., Wen, G..  2018.  A Titration Mechanism Based Congestion Model. 2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). :491—496.

Congestion diffusion resulting from the coupling by resource competing is a kind of typical failure propagation in network systems. The existing models of failure propagation mainly focused on the coupling by direct physical connection between nodes, the most efficiency path, or dependence group, while the coupling by resource competing is ignored. In this paper, a model of network congestion diffusion with resource competing is proposed. With the analysis of the similarities to resource competing in biomolecular network, the model describing the dynamic changing process of biomolecule concentration based on titration mechanism provides reference for our model. Then the innovation on titration mechanism is proposed to describe the dynamic changing process of link load in networks, and a novel congestion model is proposed. By this model, the global congestion can be evaluated. Simulations show that network congestion with resource competing can be obtained from our model.

2020-11-20
Paul, S., Padhy, N. P., Mishra, S. K., Srivastava, A. K..  2019.  UUCA: Utility-User Cooperative Algorithm for Flexible Load Scheduling in Distribution System. 2019 8th International Conference on Power Systems (ICPS). :1—6.
Demand response analysis in smart grid deployment substantiated itself as an important research area in recent few years. Two-way communication between utility and users makes peak load reduction feasible by delaying the operation of deferrable appliances. Flexible appliance rescheduling is preferred to the users compared to traditional load curtailment. Again, if users' preferences are accounted into appliance transferring process, then customers concede a little discomfort to help the utility in peak reduction. This paper presents a novel Utility-User Cooperative Algorithm (UUCA) to lower total electricity cost and gross peak demand while preserving users' privacy and preferences. Main driving force in UUCA to motivate the consumers is a new cost function for their flexible appliances. As a result, utility will experience low peak and due to electricity cost decrement, users will get reduced bill. However, to maintain privacy, the behaviors of one customer have not be revealed either to other customers or to the central utility. To justify the effectiveness, UUCA is executed separately on residential, commercial and industrial customers of a distribution grid. Harmony search optimization technique has proved itself superior compared to other heuristic search techniques to prove efficacy of UUCA.
Chin, J., Zufferey, T., Shyti, E., Hug, G..  2019.  Load Forecasting of Privacy-Aware Consumers. 2019 IEEE Milan PowerTech. :1—6.

The roll-out of smart meters (SMs) in the electric grid has enabled data-driven grid management and planning techniques. SM data can be used together with short-term load forecasts (STLFs) to overcome polling frequency constraints for better grid management. However, the use of SMs that report consumption data at high spatial and temporal resolutions entails consumer privacy risks, motivating work in protecting consumer privacy. The impact of privacy protection schemes on STLF accuracy is not well studied, especially for smaller aggregations of consumers, whose load profiles are subject to more volatility and are, thus, harder to predict. In this paper, we analyse the impact of two user demand shaping privacy protection schemes, model-distribution predictive control (MDPC) and load-levelling, on STLF accuracy. Support vector regression is used to predict the load profiles at different consumer aggregation levels. Results indicate that, while the MDPC algorithm marginally affects forecast accuracy for smaller consumer aggregations, this diminishes at higher aggregation levels. More importantly, the load-levelling scheme significantly improves STLF accuracy as it smoothens out the grid visible consumer load profile.

Sun, Y., Wang, J., Lu, Z..  2019.  Asynchronous Parallel Surrogate Optimization Algorithm Based on Ensemble Surrogating Model and Stochastic Response Surface Method. :74—84.
{Surrogate model-based optimization algorithm remains as an important solution to expensive black-box function optimization. The introduction of ensemble model enables the algorithm to automatically choose a proper model integration mode and adapt to various parameter spaces when dealing with different problems. However, this also significantly increases the computational burden of the algorithm. On the other hand, utilizing parallel computing resources and improving efficiency of black-box function optimization also require combination with surrogate optimization algorithm in order to design and realize an efficient parallel parameter space sampling mechanism. This paper makes use of parallel computing technology to speed up the weight updating related computation for the ensemble model based on Dempster-Shafer theory, and combines it with stochastic response surface method to develop a novel parallel sampling mechanism for asynchronous parameter optimization. Furthermore, it designs and implements corresponding parallel computing framework and applies the developed algorithm to quantitative trading strategy tuning in financial market. It is verified that the algorithm is both feasible and effective in actual application. The experiment demonstrates that with guarantee of optimizing performance, the parallel optimization algorithm can achieve excellent accelerating effect.
2020-11-04
Liang, Y., He, D., Chen, D..  2019.  Poisoning Attack on Load Forecasting. 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). :1230—1235.

Short-term load forecasting systems for power grids have demonstrated high accuracy and have been widely employed for commercial use. However, classic load forecasting systems, which are based on statistical methods, are subject to vulnerability from training data poisoning. In this paper, we demonstrate a data poisoning strategy that effectively corrupts the forecasting model even in the presence of outlier detection. To the best of our knowledge, poisoning attack on short-term load forecasting with outlier detection has not been studied in previous works. Our method applies to several forecasting models, including the most widely-adapted and best-performing ones, such as multiple linear regression (MLR) and neural network (NN) models. Starting with the MLR model, we develop a novel closed-form solution to quickly estimate the new MLR model after a round of data poisoning without retraining. We then employ line search and simulated annealing to find the poisoning attack solution. Furthermore, we use the MLR attacking solution to generate a numerical solution for other models, such as NN. The effectiveness of our algorithm has been tested on the Global Energy Forecasting Competition (GEFCom2012) data set with the presence of outlier detection.

2020-10-14
Khezrimotlagh, Darius, Khazaei, Javad, Asrari, Arash.  2019.  MILP Modeling of Targeted False Load Data Injection Cyberattacks to Overflow Transmission Lines in Smart Grids. 2019 North American Power Symposium (NAPS). :1—7.
Cyber attacks on transmission lines are one of the main challenges in security of smart grids. These targeted attacks, if not detected, might cause cascading problems in power systems. This paper proposes a bi-level mixed integer linear programming (MILP) optimization model for false data injection on targeted buses in a power system to overflow targeted transmission lines. The upper level optimization problem outputs the optimized false data injections on targeted load buses to overflow a targeted transmission line without violating bad data detection constraints. The lower level problem integrates the false data injections into the optimal power flow problem without violating the optimal power flow constraints. A few case studies are designed to validate the proposed attack model on IEEE 118-bus power system.
2020-07-27
Xu, Shuiling, Ji, Xinsheng, Liu, Wenyan.  2019.  Enhancing the Reliability of NFV with Heterogeneous Backup. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :923–927.
Virtual network function provides tenant with flexible and scalable end-to-end service chaining in the cloud computing and data center environments. However, comparing with traditional hardware network devices, the uncertainty caused by software and virtualization of Network Function Virtualization expands the attack surface, making the network node vulnerable to a certain types of attacks. The existing approaches for solving the problem of reliability are able to reduce the impact of failure of physical devices, but pay little attention to the attack scenario, which could be persistent and covert. In this paper, a heterogeneous backup strategy is brought up, enhancing the intrusion tolerance of NFV SFC by dynamically switching the VNF executor. The validity of the method is verified by simulation and game theory analysis.
2020-07-16
Kërçi, Taulant, Milano, Federico.  2019.  A Framework to embed the Unit Commitment Problem into Time Domain Simulations. 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe). :1—5.

This paper proposes a software framework to embed the unit commitment problem into a power system dynamic simulator. A sub-hourly, mixed-integer linear programming Security Constrained Unit Commitment (SCUC) with a rolling horizon is utilized to account for the variations of the net load of the system. The SCUC is then included into time domain simulations to study the impact of the net-load variability and uncertainty on the dynamic behavior of the system using different scheduling time periods. A case study based on the 39-bus system illustrates the features of the proposed software framework.

2020-06-26
Nath, Anubhav, Biswas, Reetam Sen, Pal, Anamitra.  2019.  Application of Machine Learning for Online Dynamic Security Assessment in Presence of System Variability and Additive Instrumentation Errors. 2019 North American Power Symposium (NAPS). :1—6.
Large-scale blackouts that have occurred in the past few decades have necessitated the need to do extensive research in the field of grid security assessment. With the aid of synchrophasor technology, which uses phasor measurement unit (PMU) data, dynamic security assessment (DSA) can be performed online. However, existing applications of DSA are challenged by variability in system conditions and unaccounted for measurement errors. To overcome these challenges, this research develops a DSA scheme to provide security prediction in real-time for load profiles of different seasons in presence of realistic errors in the PMU measurements. The major contributions of this paper are: (1) develop a DSA scheme based on PMU data, (2) consider seasonal load profiles, (3) account for varying penetrations of renewable generation, and (4) compare the accuracy of different machine learning (ML) algorithms for DSA with and without erroneous measurements. The performance of this approach is tested on the IEEE-118 bus system. Comparative analysis of the accuracies of the ML algorithms under different operating scenarios highlights the importance of considering realistic errors and variability in system conditions while creating a DSA scheme.