Visible to the public Biblio

Filters: Keyword is electrical data  [Clear All Filters]
Majumdar, R., Gayen, P. K., Mondal, S., Sadhukhan, A., Das, P. K., Kushary, I..  2019.  A Cyber Communication Package in the Application of Grid Tied Solar System. 2019 Devices for Integrated Circuit (DevIC). :146–150.

In this paper, development of cyber communication package in the application of grid connected solar system has been presented. Here, implemented communication methodology supports communication process with reduced latency, high security arrangement with various degrees of freedom. Faithful transferring of various electrical data for the purpose of measurement, monitoring and controlling actions depend on the bidirectional communication strategy. Thus, real-time communication of data through cyber network has been emphasized in this paper. The C\# language based coding is done to develop the communication program. The notable features of proposed communication process are reduction of latency during data exchange by usage of advanced encryption standard (AES) algorithm, tightening of cyber security arrangement by implementing secured socket layer (SSL) and Rivest, Shamir and Adleman (RSA) algorithms. Various real-time experiments using internet connected computers have been done to verify the usability of the proposed communication concept along with its notable features in the application.

M. Clark, L. Lampe.  2015.  "Single-channel compressive sampling of electrical data for non-intrusive load monitoring". 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP). :790-794.

Non-intrusive load monitoring (NILM) extracts information about how energy is being used in a building from electricity measurements collected at a single location. Obtaining measurements at only one location is attractive because it is inexpensive and convenient, but it can result in large amounts of data from high frequency electrical measurements. Different ways to compress or selectively measure this data are therefore required for practical implementations of NILM. We explore the use of random filtering and random demodulation, techniques that are closely related to compressed sensing, to offer a computationally simple way of compressing the electrical data. We show how these techniques can allow one to reduce the sampling rate of the electricity measurements, while requiring only one sampling channel and allowing accurate NILM performance. Our tests are performed using real measurements of electrical signals from a public data set, thus demonstrating their effectiveness on real appliances and allowing for reproducibility and comparison with other data management strategies for NILM.