Visible to the public Biblio

Filters: Keyword is synchronous motors  [Clear All Filters]
Zhang, Q., Ma, Z., Li, G., Qian, Z., Guo, X..  2016.  Temperature-dependent demagnetization nonlinear Wiener model with neural network for PM synchronous machines in electric vehicle. 2016 19th International Conference on Electrical Machines and Systems (ICEMS). :1–4.

The inevitable temperature raise leads to the demagnetization of permanent magnet synchronous motor (PMSM), that is undesirable in the application of electrical vehicle. This paper presents a nonlinear demagnetization model taking into account temperature with the Wiener structure and neural network characteristics. The remanence and intrinsic coercivity are chosen as intermediate variables, thus the relationship between motor temperature and maximal permanent magnet flux is described by the proposed neural Wiener model. Simulation and experimental results demonstrate the precision of temperature dependent demagnetization model. This work makes the basis of temperature compensation for the output torque from PMSM.

Zhuoping Yu, Junxian Wu, Lu Xiong.  2014.  Research of stability control of distributed drive electric vehicles under motor failure modes. Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), 2014 IEEE Conference and Expo. :1-5.

With the application and promotion of electric vehicles, vehicle security problems caused by actuator reliability have become increasingly prominent. Firstly, the paper analyses and sums motor failure modes and their effects of permanent magnet synchronous motor (PMSM) , which is commonly used on electric vehicles. And then design a hierarchical structure of the vehicle control strategies and the corresponding algorithms, and adjust based on the different failure modes. Finally conduct simulation conditions in CarSim environment. Verify the control strategy and algorithm can maintain vehicle stability and reduce the burden on driver under motor failure conditions.