Visible to the public Biblio

Filters: Keyword is ant colony optimisation  [Clear All Filters]
Junnarkar, Aparna A., Singh, Y. P., Deshpande, Vivek S..  2018.  SQMAA: Security, QoS and Mobility Aware ACO Based Opportunistic Routing Protocol for MANET. 2018 4th International Conference for Convergence in Technology (I2CT). :1–6.
The QoS performance of MANET routing protocols is significantly affected by the mobility conditions in network. Secondly, as MANET open nature network, there is strong possibility of different types of vulnerabilities such as blackhole attack, malicious attack, DoS attacks etc. In this research work, we are designing the novel opportunistic routing protocol in order to address the challenges of network security as well as QoS improvement. There two algorithms designed in this paper. First we proposed and designed novel QoS improvement algorithm based on optimization scheme called Ant Colony Optimization (ACO) with swarm intelligence approach. This proposed method used the RSSI measurements to determine the distance between two mobile nodes in order to select efficient path for communication. This new routing protocol is named as QoS Mobility Aware ACO (QMAA) Routing Protocol. Second, we designed security algorithm for secure communication and user's authentication in MANET under the presence attackers in network. With security algorithm the QoS aware protocol is proposed named as Secure-QMAA (SQMAA). The SQMAA achieved secure communications while guaranteed QoS performance against existing routing protocols. The simulation results shows that under the presence of malicious attackers, the performance of SQMAA are efficient as compared to QMAA and state-of-art routing protocol.
CUI, A-jun, Li, Chen, WANG, Xiao-ming.  2019.  Real-Time Early Warning of Network Security Threats Based on Improved Ant Colony Algorithm. 2019 12th International Conference on Intelligent Computation Technology and Automation (ICICTA). :309—316.
In order to better ensure the operation safety of the network, the real-time early warning of network security threats is studied based on the improved ant colony algorithm. Firstly, the network security threat perception algorithm is optimized based on the principle of neural network, and the network security threat detection process is standardized according to the optimized algorithm. Finally, the real-time early warning of network security threats is realized. Finally, the experiment proves that the network security threat real-time warning based on the improved ant colony algorithm has better security and stability than the traditional warning methods, and fully meets the research requirements.
Xie, H., Lv, K., Hu, C..  2018.  An Improved Monte Carlo Graph Search Algorithm for Optimal Attack Path Analysis. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :307-315.

The problem of optimal attack path analysis is one of the hotspots in network security. Many methods are available to calculate an optimal attack path, such as Q-learning algorithm, heuristic algorithms, etc. But most of them have shortcomings. Some methods can lead to the problem of path loss, and some methods render the result un-comprehensive. This article proposes an improved Monte Carlo Graph Search algorithm (IMCGS) to calculate optimal attack paths in target network. IMCGS can avoid the problem of path loss and get comprehensive results quickly. IMCGS is divided into two steps: selection and backpropagation, which is used to calculate optimal attack paths. A weight vector containing priority, host connection number, CVSS value is proposed for every host in an attack path. This vector is used to calculate the evaluation value, the total CVSS value and the average CVSS value of a path in the target network. Result for a sample test network is presented to demonstrate the capabilities of the proposed algorithm to generate optimal attack paths in one single run. The results obtained by IMCGS show good performance and are compared with Ant Colony Optimization Algorithm (ACO) and k-zero attack graph.

Brust, M. R., Zurad, M., Hentges, L., Gomes, L., Danoy, G., Bouvry, P..  2017.  Target Tracking Optimization of UAV Swarms Based on Dual-Pheromone Clustering. 2017 3rd IEEE International Conference on Cybernetics (CYBCONF). :1–8.

Unmanned Aerial Vehicles (UAVs) are autonomous aircraft that, when equipped with wireless communication interfaces, can share data among themselves when in communication range. Compared to single UAVs, using multiple UAVs as a collaborative swarm is considerably more effective for target tracking, reconnaissance, and surveillance missions because of their capacity to tackle complex problems synergistically. Success rates in target detection and tracking depend on map coverage performance, which in turn relies on network connectivity between UAVs to propagate surveillance results to avoid revisiting already observed areas. In this paper, we consider the problem of optimizing three objectives for a swarm of UAVs: (a) target detection and tracking, (b) map coverage, and (c) network connectivity. Our approach, Dual-Pheromone Clustering Hybrid Approach (DPCHA), incorporates a multi-hop clustering and a dual-pheromone ant-colony model to optimize these three objectives. Clustering keeps stable overlay networks, while attractive and repulsive pheromones mark areas of detected targets and visited areas. Additionally, DPCHA introduces a disappearing target model for dealing with temporarily invisible targets. Extensive simulations show that DPCHA produces significant improvements in the assessment of coverage fairness, cluster stability, and connection volatility. We compared our approach with a pure dual- pheromone approach and a no-base model, which removes the base station from the model. Results show an approximately 50% improvement in map coverage compared to the pure dual-pheromone approach.

Chia-Feng Juang, Chi-Wei Hung, Chia-Hung Hsu.  2014.  Rule-Based Cooperative Continuous Ant Colony Optimization to Improve the Accuracy of Fuzzy System Design. Fuzzy Systems, IEEE Transactions on. 22:723-735.

This paper proposes a cooperative continuous ant colony optimization (CCACO) algorithm and applies it to address the accuracy-oriented fuzzy systems (FSs) design problems. All of the free parameters in a zero- or first-order Takagi-Sugeno-Kang (TSK) FS are optimized through CCACO. The CCACO algorithm performs optimization through multiple ant colonies, where each ant colony is only responsible for optimizing the free parameters in a single fuzzy rule. The ant colonies cooperate to design a complete FS, with a complete parameter solution vector (encoding a complete FS) that is formed by selecting a subsolution component (encoding a single fuzzy rule) from each colony. Subsolutions in each ant colony are evolved independently using a new continuous ant colony optimization algorithm. In the CCACO, solutions are updated via the techniques of pheromone-based tournament ant path selection, ant wandering operation, and best-ant-attraction refinement. The performance of the CCACO is verified through applications to fuzzy controller and predictor design problems. Comparisons with other population-based optimization algorithms verify the superiority of the CCACO.

Mitchell, R., Ing-Ray Chen.  2014.  Adaptive Intrusion Detection of Malicious Unmanned Air Vehicles Using Behavior Rule Specifications. Systems, Man, and Cybernetics: Systems, IEEE Transactions on. 44:593-604.

In this paper, we propose an adaptive specification-based intrusion detection system (IDS) for detecting malicious unmanned air vehicles (UAVs) in an airborne system in which continuity of operation is of the utmost importance. An IDS audits UAVs in a distributed system to determine if the UAVs are functioning normally or are operating under malicious attacks. We investigate the impact of reckless, random, and opportunistic attacker behaviors (modes which many historical cyber attacks have used) on the effectiveness of our behavior rule-based UAV IDS (BRUIDS) which bases its audit on behavior rules to quickly assess the survivability of the UAV facing malicious attacks. Through a comparative analysis with the multiagent system/ant-colony clustering model, we demonstrate a high detection accuracy of BRUIDS for compliant performance. By adjusting the detection strength, BRUIDS can effectively trade higher false positives for lower false negatives to cope with more sophisticated random and opportunistic attackers to support ultrasafe and secure UAV applications.