Visible to the public Biblio

Found 552 results

Filters: Keyword is policy-based governance  [Clear All Filters]
2020-09-04
Glory, Farhana Zaman, Ul Aftab, Atif, Tremblay-Savard, Olivier, Mohammed, Noman.  2019.  Strong Password Generation Based On User Inputs. 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0416—0423.
Every person using different online services is concerned with the security and privacy for protecting individual information from the intruders. Many authentication systems are available for the protection of individuals' data, and the password authentication system is one of them. Due to the increment of information sharing, internet popularization, electronic commerce transactions, and data transferring, both password security and authenticity have become an essential and necessary subject. But it is also mandatory to ensure the strength of the password. For that reason, all cyber experts recommend intricate password patterns. But most of the time, the users forget their passwords because of those complicated patterns. In this paper, we are proposing a unique algorithm that will generate a strong password, unlike other existing random password generators. This password will he based on the information, i.e. (some words and numbers) provided by the users so that they do not feel challenged to remember the password. We have tested our system through various experiments using synthetic input data. We also have checked our generator with four popular online password checkers to verify the strength of the produced passwords. Based on our experiments, the reliability of our generated passwords is entirely satisfactory. We also have examined that our generated passwords can defend against two password cracking attacks named the "Dictionary attack" and the "Brute Force attack". We have implemented our system in Python programming language. In the near future, we have a plan to extend our work by developing an online free to use user interface. The passwords generated by our system are not only user-friendly but also have achieved most of the qualities of being strong as well as non- crackable passwords.
Laguduva, Vishalini, Islam, Sheikh Ariful, Aakur, Sathyanarayanan, Katkoori, Srinivas, Karam, Robert.  2019.  Machine Learning Based IoT Edge Node Security Attack and Countermeasures. 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :670—675.
Advances in technology have enabled tremendous progress in the development of a highly connected ecosystem of ubiquitous computing devices collectively called the Internet of Things (IoT). Ensuring the security of IoT devices is a high priority due to the sensitive nature of the collected data. Physically Unclonable Functions (PUFs) have emerged as critical hardware primitive for ensuring the security of IoT nodes. Malicious modeling of PUF architectures has proven to be difficult due to the inherently stochastic nature of PUF architectures. Extant approaches to malicious PUF modeling assume that a priori knowledge and physical access to the PUF architecture is available for malicious attack on the IoT node. However, many IoT networks make the underlying assumption that the PUF architecture is sufficiently tamper-proof, both physically and mathematically. In this work, we show that knowledge of the underlying PUF structure is not necessary to clone a PUF. We present a novel non-invasive, architecture independent, machine learning attack for strong PUF designs with a cloning accuracy of 93.5% and improvements of up to 48.31% over an alternative, two-stage brute force attack model. We also propose a machine-learning based countermeasure, discriminator, which can distinguish cloned PUF devices and authentic PUFs with an average accuracy of 96.01%. The proposed discriminator can be used for rapidly authenticating millions of IoT nodes remotely from the cloud server.
Manucom, Emraida Marie M., Gerardo, Bobby D., Medina, Ruji P..  2019.  Security Analysis of Improved One-Time Pad Cryptography Using TRNG Key Generator. 2019 IEEE 5th International Conference on Computer and Communications (ICCC). :1515—1521.
Cryptography is one of the important aspect of data and information security. The security strength of cryptographic algorithms rely on the secrecy and randomness of keys. In this study, bitwise operations, Fisher-Yates shuffling algorithm, and cipher text mapping are integrated in the proposed TRNG key generator for One-Time Pad cryptography. Frequency monobit, frequency within a block, and runs tests are performed to evaluate the key randomness. The proposed method is also evaluated in terms of avalanche effect and brute force attack. Tests results indicate that the proposed method generates more random keys and has a higher level of security compared with the usual OTP using PRNG and TRNGs that do not undergo a refining phase.
Subangan, S., Senthooran, V..  2019.  Secure Authentication Mechanism for Resistance to Password Attacks. 2019 19th International Conference on Advances in ICT for Emerging Regions (ICTer). 250:1—7.
Authentication is a process that provides access control of any type of computing applications by inspecting the user's identification with the database of authorized users. Passwords play the vital role in authentication mechanism to ensure the privacy of the information and avert from the illicit access. Password based authentication mechanism suffers from many password attacks such as shoulder surfing, brute forcing and dictionary attacks that crack the password of authentication schema by the adversary. Key Stroke technique, Click Pattern technique, Graphichical Password technique and Authentication panel are the several authentication techniques used to resist the password attacks in the literature. This research study critically reviews the types of password attacks and proposes a matrix based secure authentication mechanism which includes three phases namely, User generation phase, Matrix generation phase and Authentication phase to resist the existing password attacks. The performance measure of the proposed method investigates the results in terms existing password attacks and shows the good resistance to password attacks in any type of computing applications.
Osia, Seyed Ali, Rassouli, Borzoo, Haddadi, Hamed, Rabiee, Hamid R., Gündüz, Deniz.  2019.  Privacy Against Brute-Force Inference Attacks. 2019 IEEE International Symposium on Information Theory (ISIT). :637—641.
Privacy-preserving data release is about disclosing information about useful data while retaining the privacy of sensitive data. Assuming that the sensitive data is threatened by a brute-force adversary, we define Guessing Leakage as a measure of privacy, based on the concept of guessing. After investigating the properties of this measure, we derive the optimal utility-privacy trade-off via a linear program with any f-information adopted as the utility measure, and show that the optimal utility is a concave and piece-wise linear function of the privacy-leakage budget.
Gillela, Maruthi, Prenosil, Vaclav, Ginjala, Venkat Reddy.  2019.  Parallelization of Brute-Force Attack on MD5 Hash Algorithm on FPGA. 2019 32nd International Conference on VLSI Design and 2019 18th International Conference on Embedded Systems (VLSID). :88—93.
FPGA implementation of MD5 hash algorithm is faster than its software counterpart, but a pre-image brute-force attack on MD5 hash still needs 2ˆ(128) iterations theoretically. This work attempts to improve the speed of the brute-force attack on the MD5 algorithm using hardware implementation. A full 64-stage pipelining is done for MD5 hash generation and three architectures are presented for guess password generation. A 32/34/26-instance parallelization of MD5 hash generator and password generator pair is done to search for a password that was hashed using the MD5 algorithm. Total performance of about 6G trials/second has been achieved using a single Virtex-7 FPGA device.
Merhav, Neri, Cohen, Asaf.  2019.  Universal Randomized Guessing with Application to Asynchronous Decentralized Brute—Force Attacks. 2019 IEEE International Symposium on Information Theory (ISIT). :485—489.
Consider the problem of guessing a random vector X by submitting queries (guesses) of the form "Is X equal to x?" until an affirmative answer is obtained. A key figure of merit is the number of queries required until the right vector is guessed, termed the guesswork. The goal is to devise a guessing strategy which minimizes a certain guesswork moment. We study a universal, decentralized scenario where the guesser does not know the distribution of X, and is not allowed to prepare a list of words to be guessed in advance, or to remember its past guesses. Such a scenario is useful, for example, if bots within a Botnet carry out a brute-force attack to guess a password or decrypt a message, yet cannot coordinate the guesses or even know how many bots actually participate in the attack. We devise universal decentralized guessing strategies, first, for memoryless sources, and then generalize them to finite-state sources. For both, we derive the guessing exponent and prove its asymptotic optimality by deriving a matching converse. The strategies are based on randomized guessing using a universal distribution. We also extend the results to guessing with side information (SI). Finally, we design simple algorithms for sampling from the universal distributions.
Qader, Karwan, Adda, Mo.  2019.  DOS and Brute Force Attacks Faults Detection Using an Optimised Fuzzy C-Means. 2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA). :1—6.
This paper explains how the commonly occurring DOS and Brute Force attacks on computer networks can be efficiently detected and network performance improved, which reduces costs and time. Therefore, network administrators attempt to instantly diagnose any network issues. The experimental work used the SNMP-MIB parameter datasets, which are collected via a specialised MIB dataset consisting of seven types of attack as noted in section three. To resolves such issues, this researched carried out several important contributions which are related to fault management concerns in computer network systems. A central task in the detection of the attacks relies on MIB feature behaviours using the suggested SFCM method. It was concluded that the DOS and Brute Force fault detection results for three different clustering methods demonstrated that the proposed SFCM detected every data point in the related group. Consequently, the FPC approached 1.0, its highest record, and an improved performance solution better than the EM methods and K-means are based on SNMP-MIB variables.
Nursetyo, Arif, Ignatius Moses Setiadi, De Rosal, Rachmawanto, Eko Hari, Sari, Christy Atika.  2019.  Website and Network Security Techniques against Brute Force Attacks using Honeypot. 2019 Fourth International Conference on Informatics and Computing (ICIC). :1—6.
The development of the internet and the web makes human activities more practical, comfortable, and inexpensive. So that the use of the internet and websites is increasing in various ways. Public networks make the security of websites vulnerable to attack. This research proposes a Honeypot for server security against attackers who want to steal data by carrying out a brute force attack. In this research, Honeypot is integrated on the server to protect the server by creating a shadow server. This server is responsible for tricking the attacker into not being able to enter the original server. Brute force attacks tested using Medusa tools. With the application of Honeypot on the server, it is proven that the server can be secured from the attacker. Even the log of activities carried out by the attacker in the shadow server is stored in the Kippo log activities.
Mahmood, Riyadh Zaghlool, Fathil, Ahmed Fehr.  2019.  High Speed Parallel RC4 Key Searching Brute Force Attack Based on FPGA. 2019 International Conference on Advanced Science and Engineering (ICOASE). :129—134.
A parallel brute force attack on RC4 algorithm based on FPGA (Field Programmable Gate Array) with an efficient style has been presented. The main idea of this design is to use number of forecast keying methods to reduce the overall clock pulses required depended to key searching operation by utilizes on-chip BRAMs (block RAMs) of FPGA for maximizing the total number of key searching unit with taking into account the highest clock rate. Depending on scheme, 32 key searching units and main controller will be used in one Xilinx XC3S1600E-4 FPGA device, all these units working in parallel and each unit will be searching in a specific range of keys, by comparing the current result with the well-known cipher text if its match the found flag signal will change from 0 to 1 and the main controller will receive this signal and stop the searching operation. This scheme operating at 128-MHz clock frequency and gives us key searching speed of 7.7 × 106 keys/sec. Testing all possible keys (40-bits length), requires only around 39.5h.
Laatansa, Saputra, Ragil, Noranita, Beta.  2019.  Analysis of GPGPU-Based Brute-Force and Dictionary Attack on SHA-1 Password Hash. 2019 3rd International Conference on Informatics and Computational Sciences (ICICoS). :1—4.
Password data in a system usually stored in hash. Various human-caused negligence and system vulnerability can make those data fall in the hand of those who isn't entitled to or even those who have malicious purpose. Attacks which could be done on the hashed password data using GPGPU-based machine are for example: brute-force, dictionary, mask-attack, and word-list. This research explains about effectivity of brute-force and dictionary attack which done on SHA-l hashed password using GPGPU-based machine. Result is showing that brute-force effectively crack more password which has lower set of character, with over 11% of 7 or less characters passwords vs mere 3 % in the dictionary attack counterpart. Whereas dictionary attack is more effective on cracking password which has unsecure character pattern with 5,053 passwords vs 491 on best brute-force attack scenario. Usage of combined attack method (brute-force + dictionary) gives more balanced approach in terms of cracking whether the password is long or secure patterned string.
Hayashi, Masayoshi, Higaki, Hiroaki.  2018.  Security Improvement of Common-Key Cryptographic Communication by Mixture of Fake Plain- Texts. 2018 Second World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :151—157.
One of the fundamental methods for eavesdroppers to achieve a plaintext from a cryptogram is the brute force attack where possible candidates of decryption keys are exhaustively applied to the decryption algorithm. Here the only reason why the eavesdroppers believe to find the common-key and to achieve the plaintext is that the output of the decryption algorithm is contextually acceptable. According to this fact, this paper proposes a novel common-key cryptosystem where fake plaintexts which are also contextually acceptable are mixed into a cryptogram with the legal plaintext. If an eavesdropper applies a fake common-key to the decryption algorithm, it outputs the fake plaintexts which the eavesdroppers might believe legal. This paper also proposes concrete encryption/decryption algorithm which can be combined with any conventional common-key cryptosystem. Results of simulation experiments show the proposed method reduces probability for eavesdroppers to get legal plaintexts.
Khan, Samar, Khodke, Priti A., Bhagat, Amol P..  2018.  An Approach to Fault Tolerant Key Generation and Secure Spread Spectrum Communiction. 2018 International Conference on Research in Intelligent and Computing in Engineering (RICE). :1—6.
Wireless communications have encountered a considerable improvement and have integrated human life through various applications, mainly by the widespread of mobile ad hoc and sensor networks. A fundamental characteristic of wireless communications are in their broadcast nature, which allows accessibility of information without placing restrictions on a user's location. However, accessibility also makes wireless communications vulnerable to eavesdropping. To enhance the security of network communication, we propose a separate key generation server which is responsible for key generation using complex random algorithm. The key will remain in database in encrypted format. To prevent brute force attack, we propose various group key generation algorithms in which every group will have separate group key to verify group member's identity. The group key will be verified with the session information before decryption, so that our system will prevent attack if any attacker knows the group key. To increase the security of the system, we propose three level encryption securities: Client side encryption using AES, Server side encryption using AES, and Artificial noise generation and addition. By using this our system is free from brute force attack as we are using three level message security and complex Random key generation algorithms.
Velan, Petr, Husák, Martin, Tovarňák, Daniel.  2018.  Rapid prototyping of flow-based detection methods using complex event processing. NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1—3.
Detection of network attacks is the first step to network security. Many different methods for attack detection were proposed in the past. However, descriptions of these methods are often not complete and it is difficult to verify that the actual implementation matches the description. In this demo paper, we propose to use Complex Event Processing (CEP) for developing detection methods based on network flows. By writing the detection methods in an Event Processing Language (EPL), we can address the above-mentioned problems. The SQL-like syntax of most EPLs is easily readable so the detection method is self-documented. Moreover, it is directly executable in the CEP system, which eliminates inconsistencies between documentation and implementation. The demo will show a running example of a multi-stage HTTP brute force attack detection using Esper and its EPL.
Sadkhan, Sattar B., Reda, Dhilal M..  2018.  Best Strategies of Choosing Crypto-System’s Key for Cryptographer and Attacker Based on Game Theory. 2018 Al-Mansour International Conference on New Trends in Computing, Communication, and Information Technology (NTCCIT). :1—6.
One of the most important strength features of crypto-system's is the key space. As a result, whenever the system has more key space, it will be more resistant to attack. The weakest type of attack on the key space is Brute Force attack, which tests all the keys on the ciphertext in order to get the plaintext. But there are several strategies that can be considered by the attacker and cryptographer related to the selection of the right key with the lowest cost (time). Game theory is a mathematical theory that draws the best strategies for most problems. This research propose a new evaluation method which is employing game theory to draw best strategies for both players (cryptographer & attacker).
Sree Ranjani, R, Nirmala Devi, M.  2018.  A Novel Logical Locking Technique Against Key-Guessing Attacks. 2018 8th International Symposium on Embedded Computing and System Design (ISED). :178—182.
Logical locking is the most popular countermeasure against the hardware attacks like intellectual property (IP) piracy, Trojan insertion and illegal integrated circuit (IC) overproduction. The functionality of the design is locked by the added logics into the design. Thus, the design is accessible only to the authorized users by applying the valid keys. However, extracting the secret key of the logically locked design have become an extensive effort and it is commonly known as key guessing attacks. Thus, the main objective of the proposed technique is to build a secured hardware against attacks like Brute force attack, Hill climbing attack and path sensitization attacks. Furthermore, the gates with low observability are chosen for encryption, this is to obtain an optimal output corruption of 50% Hamming distance with minimal design overhead and implementation complexity. The experimental results are validated on ISCAS'85 benchmark circuits, with a highly secured locking mechanism.
Routh, Caleb, DeCrescenzo, Brandon, Roy, Swapnoneel.  2018.  Attacks and vulnerability analysis of e-mail as a password reset point. 2018 Fourth International Conference on Mobile and Secure Services (MobiSecServ). :1—5.
In this work, we perform security analysis of using an e-mail as a self-service password reset point, and exploit some of the vulnerabilities of e-mail servers' forgotten password reset paths. We perform and illustrate three different attacks on a personal Email account, using a variety of tools such as: public knowledge attainable through social media or public records to answer security questions and execute a social engineering attack, hardware available to the public to perform a man in the middle attack, and free software to perform a brute-force attack on the login of the email account. Our results expose some of the inherent vulnerabilities in using emails as password reset points. The findings are extremely relevant to the security of mobile devices since users' trend has leaned towards usage of mobile devices over desktops for Internet access.
Moe, Khin Su Myat, Win, Thanda.  2018.  Enhanced Honey Encryption Algorithm for Increasing Message Space against Brute Force Attack. 2018 15th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). :86—89.
In the era of digitization, data security is a vital role in message transmission and all systems that deal with users require stronger encryption techniques that against brute force attack. Honey encryption (HE) algorithm is a user data protection algorithm that can deceive the attackers from unauthorized access to user, database and websites. The main part of conventional HE is distribution transforming encoder (DTE). However, the current DTE process using cumulative distribution function (CDF) has the weakness in message space limitation because CDF cannot solve the probability theory in more than four messages. So, we propose a new method in DTE process using discrete distribution function in order to solve message space limitation problem. In our proposed honeywords generation method, the current weakness of existing honeywords generation method such as storage overhead problem can be solved. In this paper, we also describe the case studies calculation of DTE in order to prove that new DTE process has no message space limitation and mathematical model using discrete distribution function for DTE process facilitates the distribution probability theory.
Bošnjak, L., Sreš, J., Brumen, B..  2018.  Brute-force and dictionary attack on hashed real-world passwords. 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). :1161—1166.
An information system is only as secure as its weakest point. In many information systems that remains to be the human factor, despite continuous attempts to educate the users about the importance of password security and enforcing password creation policies on them. Furthermore, not only do the average users' password creation and management habits remain more or less the same, but the password cracking tools, and more importantly, the computer hardware, keep improving as well. In this study, we performed a broad targeted attack combining several well-established cracking techniques, such as brute-force, dictionary, and hybrid attacks, on the passwords used by the students of a Slovenian university to access the online grading system. Our goal was to demonstrate how easy it is to crack most of the user-created passwords using simple and predictable patterns. To identify differences between them, we performed an analysis of the cracked and uncracked passwords and measured their strength. The results have shown that even a single low to mid-range modern GPU can crack over 95% of passwords in just few days, while a more dedicated system can crack all but the strongest 0.5% of them.
2020-08-17
He, Peixuan, Xue, Kaiping, Xu, Jie, Xia, Qiudong, Liu, Jianqing, Yue, Hao.  2019.  Attribute-Based Accountable Access Control for Multimedia Content with In-Network Caching. 2019 IEEE International Conference on Multimedia and Expo (ICME). :778–783.
Nowadays, multimedia content retrieval has become the major service requirement of the Internet and the traffic of these contents has dominated the IP traffic. To reduce the duplicated traffic and improve the performance of distributing massive volumes of multimedia contents, in-network caching has been proposed recently. However, because in-network content caching can be directly utilized to respond users' requests, multimedia content retrieval is beyond content providers' control and makes it hard for them to implement access control and service accounting. In this paper, we propose an attribute-based accountable access control scheme for multimedia content distribution while making the best of in-network caching, in which content providers can be fully offline. In our scheme, the attribute-based encryption at multimedia content provider side and access policy based authentication at the edge router side jointly ensure the secure access control, which is also efficient in both space and time. Besides, secure service accounting is implemented by letting edge routers collect service credentials generated during users' request process. Through the informal security analysis, we prove the security of our scheme. Simulation results demonstrate that our scheme is efficient with acceptable overhead.
Garg, Hittu, Dave, Mayank.  2019.  Securing User Access at IoT Middleware Using Attribute Based Access Control. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.
IoT middleware is an additional layer between IoT devices and the cloud applications that reduces computation and data handling on the cloud. In a typical IoT system model, middleware primarily connects to different IoT devices via IoT gateway. Device data stored on middleware is sensitive and private to a user. Middleware must have built-in mechanisms to address these issues, as well as the implementation of user authentication and access control. This paper presents the current methods used for access control on middleware and introduces Attribute-based encryption (ABE) on middleware for access control. ABE combines access control with data encryption for ensuring the integrity of data. In this paper, we propose Ciphertext-policy attribute-based encryption, abbreviated CP-ABE scheme on the middleware layer in the IoT system architecture for user access control. The proposed scheme is aimed to provide security and efficiency while reducing complexity on middleware. We have used the AVISPA tool to strengthen the proposed scheme.
Fischer, Marten, Scheerhorn, Alfred, Tönjes, Ralf.  2019.  Using Attribute-Based Encryption on IoT Devices with instant Key Revocation. 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). :126–131.
The Internet of Things (IoT) relies on sensor devices to measure real-world phenomena in order to provide IoT services. The sensor readings are shared with multiple entities, such as IoT services, other IoT devices or other third parties. The collected data may be sensitive and include personal information. To protect the privacy of the users, the data needs to be protected through an encryption algorithm. For sharing cryptographic cipher-texts with a group of users Attribute-Based Encryption (ABE) is well suited, as it does not require to create group keys. However, the creation of ABE cipher-texts is slow when executed on resource constraint devices, such as IoT sensors. In this paper, we present a modification of an ABE scheme, which not only allows to encrypt data efficiently using ABE but also reduces the size of the cipher-text, that must be transmitted by the sensor. We also show how our modification can be used to realise an instantaneous key revocation mechanism.
Eswaraiah, Guruprasad, Subramanian, Lalitha Muthu, Vishwanathan, Roopa.  2019.  Exploring Automation in Proofs of Attribute-based Encryption in the Standard Model. 2019 17th International Conference on Privacy, Security and Trust (PST). :1–5.
Motivated by the complexity of cryptographic proofs, we propose methods to automate the construction and verification of cryptographic proofs in the standard model. Proofs in the standard model (as opposed to the random oracle model) are the gold standard of cryptographic proofs, and most cryptographic protocols strive to achieve them. The burgeoning complexity of cryptographic proofs implies that such proofs are prone to errors, and are hard to write, much less verify. In this paper, we propose techniques to generate automated proofs for attribute-based encryption schemes in the standard model, building upon a prototype tool, AutoG&P due to Barthe et al. In doing so, we significantly expand the scope of AutoG&P to support a rich set of data types such as multi-dimensional arrays, and constructs commonly used in cryptographic protocols such as monotone-access structures, and linear secret-sharing schemes. We also provide support for a extended class of pairing-based assumptions. We demonstrate the usefulness of our extensions by giving automated proofs of the Lewko et al. attribute-based encryption scheme, and the Waters' ciphertext-policy attribute-based encryption scheme.
Myint, Phyo Wah Wah, Hlaing, Swe Zin, Htoon, Ei Chaw.  2019.  Policy-based Revolutionary Ciphertext-policy Attributes-based Encryption. 2019 International Conference on Advanced Information Technologies (ICAIT). :227–232.
Ciphertext-policy Attributes-based Encryption (CP-ABE) is an encouraging cryptographic mechanism. It behaves an access control mechanism for data security. A ciphertext and secret key of user are dependent upon attributes. As a nature of CP-ABE, the data owner defines access policy before encrypting plaintext by his right. Therefore, CP-ABE is suitable in a real environment. In CP-ABE, the revocation issue is demanding since each attribute is shared by many users. A policy-based revolutionary CP-ABE scheme is proposed in this paper. In the proposed scheme, revocation takes place in policy level because a policy consists of threshold attributes and each policy is identified as a unique identity number. Policy revocation means that the data owner updates his policy identity number for ciphertext whenever any attribute is changed in his policy. To be a flexible updating policy control, four types of updating policy levels are identified for the data owner. Authorized user gets a secret key from a trusted authority (TA). TA updates the secret key according to the policy updating level done by the data owner. This paper tests personal health records (PHRs) and analyzes execution times among conventional CP-ABE, other enhanced CP-ABE and the proposed scheme.
Girgenti, Benedetto, Perazzo, Pericle, Vallati, Carlo, Righetti, Francesca, Dini, Gianluca, Anastasi, Giuseppe.  2019.  On the Feasibility of Attribute-Based Encryption on Constrained IoT Devices for Smart Systems. 2019 IEEE International Conference on Smart Computing (SMARTCOMP). :225–232.
The Internet of Things (IoT) is enabling a new generation of innovative services based on the seamless integration of smart objects into information systems. Such IoT devices generate an uninterrupted flow of information that can be transmitted through an untrusted network and stored on an untrusted infrastructure. The latter raises new security and privacy challenges that require novel cryptographic methods. Attribute-Based Encryption (ABE) is a new type of public-key encryption that enforces a fine-grained access control on encrypted data based on flexible access policies. The feasibility of ABE adoption in fully-fledged computing systems, i.e. smartphones or embedded systems, has been demonstrated in recent works. In this paper we assess the feasibility of the adoption of ABE in typical IoT constrained devices, characterized by limited capabilities in terms of computing, storage and power. Specifically, an implementation of three ABE schemes for ESP32, a low-cost popular platform to deploy IoT devices, is developed and evaluated in terms of encryption/decryption time and energy consumption. The performance evaluation shows that the adoption of ABE on constrained devices is feasible, although it has a cost that increases with the number of attributes. The analysis in particular highlights how ABE has a significant impact in the lifetime of battery-powered devices, which is impaired significantly when a high number of attributes is adopted.