Visible to the public Biblio

Found 745 results

Filters: Keyword is policy-based governance  [Clear All Filters]
2021-05-25
Pradhan, Ankit, R., Punith., Sethi, Kamalakanta, Bera, Padmalochan.  2020.  Smart Grid Data Security using Practical CP-ABE with Obfuscated Policy and Outsourcing Decryption. 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1–8.
Smart grid consists of multiple different entities related to various energy management systems which share fine-grained energy measurements among themselves in an optimal and reliable manner. Such delivery is achieved through intelligent transmission and distribution networks composed of various stakeholders like Phasor Measurement Units (PMUs), Master and Remote Terminal Units (MTU and RTU), Storage Centers and users in power utility departments subject to volatile changes in requirements. Hence, secure accessibility of data becomes vital in the context of efficient functioning of the smart grid. In this paper, we propose a practical attribute-based encryption scheme for securing data sharing and data access in Smart Grid architectures with the added advantage of obfuscating the access policy. This is aimed at preserving data privacy in the context of competing smart grid operators. We build our scheme on Linear Secret Sharing (LSS) Schemes for supporting any monotone access structures and thus enhancing the expressiveness of access policies. Lastly, we analyze the security, access policy privacy and collusion resistance properties of our cryptosystem and provide an efficiency comparison as well as experimental analysis using the Charm-Crypto framework to validate the proficiency of our proposed solution.
Fang, Ying, Gu, Tianlong, Chang, Liang, Li, Long.  2020.  Algebraic Decision Diagram-Based CP-ABE with Constant Secret and Fast Decryption. 2020 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :98–106.
Ciphertext-policy attribute-based encryption (CP-ABE) is applied to many data service platforms to provides secure and fine-grained access control. In this paper, a new CP-ABE system based on the algebraic decision diagram (ADD) is presented. The new system makes full use of both the powerful description ability and the high calculating efficiency of ADD to improves the performance and efficiency of algorithms contained in CP-ABE. First, the new system supports both positive and negative attributes in the description of access polices. Second, the size of the secret key is constant and is not affected by the number of attributes. Third, time complexity of the key generation and decryption algorithms are O(1). Finally, this scheme allows visitors to have different access permissions to access shared data or file. At the same time, PV operation is introduced into CP-ABE framework for the first time to prevent resource conflicts caused by read and write operations on shared files. Compared with other schemes, the new scheme proposed in this paper performs better in function and efficiency.
Taha, Mohammad Bany, Chowdhury, Rasel.  2020.  GALB: Load Balancing Algorithm for CP-ABE Encryption Tasks in E-Health Environment. 2020 Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN). :165–170.
Security of personal data in the e-healthcare has always been challenging issue. The embedded and wearable devices used to collect these personal and critical data of the patients and users are sensitive in nature. Attribute-Based Encryption is believed to provide access control along with data security for distributed data among multiple parties. These resources limited devices do have the capabilities to secure the data while sending to the cloud but instead it increases the overhead and latency of running the encryption algorithm. On the top of if confidentiality is required, which will add more latency. In order to reduce latency and overhead, we propose a new load balancing algorithm that will distribute the data to nearby devices with available resources to encrypt the data and send it to the cloud. In this article, we are proposing a load balancing algorithm for E-Health system called (GALB). Our algorithm is based on Genetic Algorithm (GA). Our algorithm (GALB) distribute the tasks that received to the main gateway between the devices on E-health environment. The distribution strategy is based on the available resources in the devices, the distance between the gateway and the those devices, and the complexity of the task (size) and CP-ABE encryption policy length. In order to evaluate our algorithm performance, we compare the near optimal solution proposed by GALB with the optimal solution proposed by LP.
Chen, Yingquan, Wang, Yong.  2020.  Efficient Conversion Scheme Of Access Matrix In CP-ABE With Double Revocation Capability. 2020 IEEE International Conference on Progress in Informatics and Computing (PIC). :352–357.
To achieve a fine-grained access control function and guarantee the data confidentiality in the cloud storage environment, ciphertext policy attribute-based encryption (CP-ABE) has been widely implemented. However, due to the high computation and communication overhead, the nature of CP-ABE mechanism makes it difficult to be adopted in resource constrained terminals. Furthermore, the way of realizing varying levels of undo operations remains a problem. To this end, the access matrix that satisfies linear secret sharing scheme (LSSS) was optimized with Cauchy matrix, and then a user-level revocation scheme based on Chinese Remainder Theorem was proposed. Additionally, the attribute level revocation scheme which is based on the method of key encrypt key (KEK) and can help to reduce the storage overhead has also been improved.
Zhang, ZhiShuo, Zhang, Wei, Qin, Zhiguang.  2020.  Multi-Authority CP-ABE with Dynamical Revocation in Space-Air-Ground Integrated Network. 2020 International Conference on Space-Air-Ground Computing (SAGC). :76–81.
Space-air-ground integrated network (SAGIN) is emerged as a versatile computing and traffic architecture in recent years. Though SAGIN brings many significant benefits for modern communication and computing services, there are many unprecedented challenges in SAGIN. The one critical challenge in SAGIN is the data security. In SAGIN, because the data will be stored in cleartext on cloud, the sensitive data may suffer from the illegal access by the unauthorized users even the untrusted cloud servers (CSs). Ciphertext-policy attribute-based encryption (CP-ABE), which is a type of attribute-based encryption (ABE), has been regarded as a promising solution to the critical challenge of the data security on cloud. But there are two main blemishes in traditional CP-ABE. The first one is that there is only one attribute authority (AA) in CP-ABE. If the single AA crashs down, the whole system will be shut down. The second one is that the AA cannot effectively manage the life cycle of the users’ private keys. If a user on longer has one attribute, the AA cannot revoke the user’s private key of this attribute. This means the user can still decrypt some ciphertexts using this invalid attribute. In this paper, to solve the two flaws mentioned above, we propose a multi-authority CP-ABE (MA-CP-ABE) scheme with the dynamical key revocation (DKR). Our key revocation supports both user revocation and attribute revocation. And the our revocation is time friendly. What’s more, by using our dynamically tag-based revocation algorithm, AAs can dynamically and directly re-enable or revoke the invalid attributes to users. Finally, by evaluating and implementing our scheme, we can observe that our scheme is more comprehensive and practical for cloud applications in SAGIN.
2021-05-13
Wang, Xiaoyu, Gao, Yuanyuan, Zhang, Guangna, Guo, Mingxi.  2020.  Prediction of Optimal Power Allocation for Enhancing Security-Reliability Tradeoff with the Application of Artificial Neural Networks. 2020 2nd International Conference on Advances in Computer Technology, Information Science and Communications (CTISC). :40–45.
In this paper, we propose a power allocation scheme in order to improve both secure and reliable performance in the wireless two-hop threshold-selection decode-and-forward (DF) relaying networks, which is so crucial to set a threshold value related the signal-to-noise ratio (SNR) of the source signal at relay nodes for perfect decoding. We adapt the maximal-ratio combining (MRC) receiving SNR from the direct and relaying paths both at the destination and at the eavesdropper. Particularly worth mentioning is that the closed expression form of outage probability and intercept probability is driven, which can quantify the security and reliability, respectively. We also make endeavors to utilize a metric to tradeoff the security and the reliability (SRT) and find out the relevance between them in the balanced case. But beyond that, in the pursuit of tradeoff performance, power allocation tends to depend on the threshold value. In other words, it provides a new method optimizing total power to the source and the relay by the threshold value. The results are obtained from analysis, confirmed by simulation, and predicted by artificial neural networks (ANNs), which is trained with back propagation (BP) algorithm, and thus the feasibility of the proposed method is verified.
Mahmoud, Loreen, Praveen, Raja.  2020.  Artificial Neural Networks for detecting Intrusions: A survey. 2020 Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN). :41–48.
Nowadays, the networks attacks became very sophisticated and hard to be recognized, The traditional types of intrusion detection systems became inefficient in predicting new types of attacks. As the IDS is an important factor in securing the network in the real time, many new effective IDS approaches have been proposed. In this paper, we intend to discuss different Artificial Neural Networks based IDS approaches, also we are going to categorize them in four categories (normal ANN, DNN, CNN, RNN) and make a comparison between them depending on different performance parameters (accuracy, FNR, FPR, training time, epochs and the learning rate) and other factors like the network structure, the classification type, the used dataset. At the end of the survey, we will mention the merits and demerits of each approach and suggest some enhancements to avoid the noticed drawbacks.
Venceslai, Valerio, Marchisio, Alberto, Alouani, Ihsen, Martina, Maurizio, Shafique, Muhammad.  2020.  NeuroAttack: Undermining Spiking Neural Networks Security through Externally Triggered Bit-Flips. 2020 International Joint Conference on Neural Networks (IJCNN). :1–8.

Due to their proven efficiency, machine-learning systems are deployed in a wide range of complex real-life problems. More specifically, Spiking Neural Networks (SNNs) emerged as a promising solution to the accuracy, resource-utilization, and energy-efficiency challenges in machine-learning systems. While these systems are going mainstream, they have inherent security and reliability issues. In this paper, we propose NeuroAttack, a cross-layer attack that threatens the SNNs integrity by exploiting low-level reliability issues through a high-level attack. Particularly, we trigger a fault-injection based sneaky hardware backdoor through a carefully crafted adversarial input noise. Our results on Deep Neural Networks (DNNs) and SNNs show a serious integrity threat to state-of-the art machine-learning techniques.

Liu, Shuyong, Jiang, Hongrui, Li, Sizhao, Yang, Yang, Shen, Linshan.  2020.  A Feature Compression Technique for Anomaly Detection Using Convolutional Neural Networks. 2020 IEEE 14th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :39–42.
Anomaly detection classification technology based on deep learning is one of the crucial technologies supporting network security. However, as the data increasing, this traditional model cannot guarantee that the false alarm rate is minimized while meeting the high detection rate. Additionally, distribution of imbalanced abnormal samples will lead to an increase in the error rate of the classification results. In this work, since CNN is effective in network intrusion classification, we embed a compressed feature layer in CNN (Convolutional Neural Networks). The purpose is to improve the efficiency of network intrusion detection. After our model was trained for 55 epochs and we set the learning rate of the model to 0.01, the detection rate reaches over 98%.
Monakhov, Yuri, Monakhov, Mikhail, Telny, Andrey, Mazurok, Dmitry, Kuznetsova, Anna.  2020.  Improving Security of Neural Networks in the Identification Module of Decision Support Systems. 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :571–574.
In recent years, neural networks have been implemented while solving various tasks. Deep learning algorithms provide state of the art performance in computer vision, NLP, speech recognition, speaker recognition and many other fields. In spite of the good performance, neural networks have significant drawback- they have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. While being imperceptible to a human eye, such perturbations lead to significant drop in classification accuracy. It is demonstrated by many studies related to neural network security. Considering the pros and cons of neural networks, as well as a variety of their applications, developing of the methods to improve the robustness of neural networks against adversarial attacks becomes an urgent task. In the article authors propose the “minimalistic” attacker model of the decision support system identification unit, adaptive recommendations on security enhancing, and a set of protective methods. Suggested methods allow for significant increase in classification accuracy under adversarial attacks, as it is demonstrated by an experiment outlined in this article.
Li, Yizhi.  2020.  Research on Application of Convolutional Neural Network in Intrusion Detection. 2020 7th International Forum on Electrical Engineering and Automation (IFEEA). :720–723.
At present, our life is almost inseparable from the network, the network provides a lot of convenience for our life. However, a variety of network security incidents occur very frequently. In recent years, with the continuous development of neural network technology, more and more researchers have applied neural network to intrusion detection, which has developed into a new research direction in intrusion detection. As long as the neural network is provided with input data including network data packets, through the process of self-learning, the neural network can separate abnormal data features and effectively detect abnormal data. Therefore, the article innovatively proposes an intrusion detection method based on deep convolutional neural networks (CNN), which is used to test on public data sets. The results show that the model has a higher accuracy rate and a lower false negative rate than traditional intrusion detection methods.
Sheptunov, Sergey A., Sukhanova, Natalia V..  2020.  The Problems of Design and Application of Switching Neural Networks in Creation of Artificial Intelligence. 2020 International Conference Quality Management, Transport and Information Security, Information Technologies (IT QM IS). :428–431.
The new switching architecture of the neural networks was proposed. The switching neural networks consist of the neurons and the switchers. The goal is to reduce expenses on the artificial neural network design and training. For realization of complex models, algorithms and methods of management the neural networks of the big size are required. The number of the interconnection links “everyone with everyone” grows with the number of neurons. The training of big neural networks requires the resources of supercomputers. Time of training of neural networks also depends on the number of neurons in the network. Switching neural networks are divided into fragments connected by the switchers. Training of switcher neuron network is provided by fragments. On the basis of switching neural networks the devices of associative memory were designed with the number of neurons comparable to the human brain.
Nakhushev, Rakhim S., Sukhanova, Natalia V..  2020.  Application of the Neural Networks for Cryptographic Information Security. 2020 International Conference Quality Management, Transport and Information Security, Information Technologies (IT QM IS). :421–423.
The object of research is information security. The tools used for research are artificial neural networks. The goal is to increase the cryptography security. The problems are: the big volume of information, the expenses for neural networks design and training. It is offered to use the neural network for the cryptographic transformation of information.
Sheng, Mingren, Liu, Hongri, Yang, Xu, Wang, Wei, Huang, Junheng, Wang, Bailing.  2020.  Network Security Situation Prediction in Software Defined Networking Data Plane. 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications( AEECA). :475–479.
Software-Defined Networking (SDN) simplifies network management by separating the control plane from the data forwarding plane. However, the plane separation technology introduces many new loopholes in the SDN data plane. In order to facilitate taking proactive measures to reduce the damage degree of network security events, this paper proposes a security situation prediction method based on particle swarm optimization algorithm and long-short-term memory neural network for network security events on the SDN data plane. According to the statistical information of the security incident, the analytic hierarchy process is used to calculate the SDN data plane security situation risk value. Then use the historical data of the security situation risk value to build an artificial neural network prediction model. Finally, a prediction model is used to predict the future security situation risk value. Experiments show that this method has good prediction accuracy and stability.
Zhang, Yunxiang, Rao, Zhuyi.  2020.  Research on Information Security Evaluation Based on Artificial Neural Network. 2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :424–428.

In order to improve the information security ability of the network information platform, the information security evaluation method is proposed based on artificial neural network. Based on the comprehensive analysis of the security events in the construction of the network information platform, the risk assessment model of the network information platform is constructed based on the artificial neural network theory. The weight calculation algorithm of artificial neural network and the minimum artificial neural network pruning algorithm are also given, which can realize the quantitative evaluation of network information security. The fuzzy neural network weighted control method is used to control the information security, and the non-recursive traversal method is adopted to realize the adaptive training of information security assessment process. The adaptive learning of the artificial neural network is carried out according to the conditions, and the ability of information encryption and transmission is improved. The information security assessment is realized. The simulation results show that the method is accurate and ensures the information security.

2021-05-05
Chalkiadakis, Nikolaos, Deyannis, Dimitris, Karnikis, Dimitris, Vasiliadis, Giorgos, Ioannidis, Sotiris.  2020.  The Million Dollar Handshake: Secure and Attested Communications in the Cloud. 2020 IEEE 13th International Conference on Cloud Computing (CLOUD). :63—70.

The number of applications and services that are hosted on cloud platforms is constantly increasing. Nowadays, more and more applications are hosted as services on cloud platforms, co-existing with other services in a mutually untrusted environment. Facilities such as virtual machines, containers and encrypted communication channels aim to offer isolation between the various applications and protect sensitive user data. However, such techniques are not always able to provide a secure execution environment for sensitive applications nor they offer guarantees that data are not monitored by an honest but curious provider once they reach the cloud infrastructure. The recent advancements of trusted execution environments within commodity processors, such as Intel SGX, provide a secure reverse sandbox, where code and data are isolated even from the underlying operating system. Moreover, Intel SGX provides a remote attestation mechanism, allowing the communicating parties to verify their identity as well as prove that code is executed on hardware-assisted software enclaves. Many approaches try to ensure code and data integrity, as well as enforce channel encryption schemes such as TLS, however, these techniques are not enough to achieve complete isolation and secure communications without hardware assistance or are not efficient in terms of performance. In this work, we design and implement a practical attestation system that allows the service provider to offer a seamless attestation service between the hosted applications and the end clients. Furthermore, we implement a novel caching system that is capable to eliminate the latencies introduced by the remote attestation process. Our approach allows the parties to attest one another before each communication attempt, with improved performance when compared to a standard TLS handshake.

Coulter, Rory, Zhang, Jun, Pan, Lei, Xiang, Yang.  2020.  Unmasking Windows Advanced Persistent Threat Execution. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :268—276.

The advanced persistent threat (APT) landscape has been studied without quantifiable data, for which indicators of compromise (IoC) may be uniformly analyzed, replicated, or used to support security mechanisms. This work culminates extensive academic and industry APT analysis, not as an incremental step in existing approaches to APT detection, but as a new benchmark of APT related opportunity. We collect 15,259 APT IoC hashes, retrieving subsequent sandbox execution logs across 41 different file types. This work forms an initial focus on Windows-based threat detection. We present a novel Windows APT executable (APT-EXE) dataset, made available to the research community. Manual and statistical analysis of the APT-EXE dataset is conducted, along with supporting feature analysis. We draw upon repeat and common APT paths access, file types, and operations within the APT-EXE dataset to generalize APT execution footprints. A baseline case analysis successfully identifies a majority of 117 of 152 live APT samples from campaigns across 2018 and 2019.

Poudyal, Subash, Dasgupta, Dipankar.  2020.  AI-Powered Ransomware Detection Framework. 2020 IEEE Symposium Series on Computational Intelligence (SSCI). :1154—1161.

Ransomware attacks are taking advantage of the ongoing pandemics and attacking the vulnerable systems in business, health sector, education, insurance, bank, and government sectors. Various approaches have been proposed to combat ransomware, but the dynamic nature of malware writers often bypasses the security checkpoints. There are commercial tools available in the market for ransomware analysis and detection, but their performance is questionable. This paper aims at proposing an AI-based ransomware detection framework and designing a detection tool (AIRaD) using a combination of both static and dynamic malware analysis techniques. Dynamic binary instrumentation is done using PIN tool, function call trace is analyzed leveraging Cuckoo sandbox and Ghidra. Features extracted at DLL, function call, and assembly level are processed with NLP, association rule mining techniques and fed to different machine learning classifiers. Support vector machine and Adaboost with J48 algorithms achieved the highest accuracy of 99.54% with 0.005 false-positive rates for a multi-level combined term frequency approach.

Chi, Po-Wen, Wang, Ming-Hung, Zheng, Yu.  2020.  SandboxNet: An Online Malicious SDN Application Detection Framework for SDN Networking. 2020 International Computer Symposium (ICS). :397—402.

Software Defined Networking (SDN) is a concept that decouples the control plane and the user plane. So the network administrator can easily control the network behavior through its own programs. However, the administrator may unconsciously apply some malicious programs on SDN controllers so that the whole network may be under the attacker’s control. In this paper, we discuss the malicious software issue on SDN networks. We use the idea of sandbox to propose a sandbox network called SanboxNet. We emulate a virtual isolated network environment to verify the SDN application functions. With continuous monitoring, we can locate the suspicious SDN applications. We also consider the sandbox-evading issue in our framework. The emulated networks and the real world networks will be indistinguishable to the SDN controller.

Singh, Sukhpreet, Jagdev, Gagandeep.  2020.  Execution of Big Data Analytics in Automotive Industry using Hortonworks Sandbox. 2020 Indo – Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN). :158—163.

The market landscape has undergone dramatic change because of globalization, shifting marketing conditions, cost pressure, increased competition, and volatility. Transforming the operation of businesses has been possible because of the astonishing speed at which technology has witnessed the change. The automotive industry is on the edge of a revolution. The increased customer expectations, changing ownership, self-driving vehicles and much more have led to the transformation of automobiles, applications, and services from artificial intelligence, sensors, RFID to big data analysis. Large automobiles industries have been emphasizing the collection of data to gain insight into customer's expectations, preferences, and budgets alongside competitor's policies. Statistical methods can be applied to historical data, which has been gathered from various authentic sources and can be used to identify the impact of fixed and variable marketing investments and support automakers to come up with a more effective, precise, and efficient approach to target customers. Proper analysis of supply chain data can disclose the weak links in the chain enabling to adopt timely countermeasures to minimize the adverse effects. In order to fully gain benefit from analytics, the collaboration of a detailed set of capabilities responsible for intersecting and integrating with multiple functions and teams across the business is required. The effective role played by big data analysis in the automobile industry has also been expanded in the research paper. The research paper discusses the scope and challenges of big data. The paper also elaborates on the working technology behind the concept of big data. The paper illustrates the working of MapReduce technology that executes in the back end and is responsible for performing data mining.

Cano M, Jeimy J..  2020.  Sandbox: Revindicate failure as the foundation of learning. 2020 IEEE World Conference on Engineering Education (EDUNINE). :1—6.

In an increasingly asymmetric context of both instability and permanent innovation, organizations demand new capacities and learning patterns. In this sense, supervisors have adopted the metaphor of the "sandbox" as a strategy that allows their regulated parties to experiment and test new proposals in order to study them and adjust to the established compliance frameworks. Therefore, the concept of the "sandbox" is of educational interest as a way to revindicate failure as a right in the learning process, allowing students to think, experiment, ask questions and propose ideas outside the known theories, and thus overcome the mechanistic formation rooted in many of the higher education institutions. Consequently, this article proposes the application of this concept for educational institutions as a way of resignifying what students have learned.

Kumar, Rahul, Sethi, Kamalakanta, Prajapati, Nishant, Rout, Rashmi Ranjan, Bera, Padmalochan.  2020.  Machine Learning based Malware Detection in Cloud Environment using Clustering Approach. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—7.

Enforcing security and resilience in a cloud platform is an essential but challenging problem due to the presence of a large number of heterogeneous applications running on shared resources. A security analysis system that can detect threats or malware must exist inside the cloud infrastructure. Much research has been done on machine learning-driven malware analysis, but it is limited in computational complexity and detection accuracy. To overcome these drawbacks, we proposed a new malware detection system based on the concept of clustering and trend micro locality sensitive hashing (TLSH). We used Cuckoo sandbox, which provides dynamic analysis reports of files by executing them in an isolated environment. We used a novel feature extraction algorithm to extract essential features from the malware reports obtained from the Cuckoo sandbox. Further, the most important features are selected using principal component analysis (PCA), random forest, and Chi-square feature selection methods. Subsequently, the experimental results are obtained for clustering and non-clustering approaches on three classifiers, including Decision Tree, Random Forest, and Logistic Regression. The model performance shows better classification accuracy and false positive rate (FPR) as compared to the state-of-the-art works and non-clustering approach at significantly lesser computation cost.

Kishore, Pushkar, Barisal, Swadhin Kumar, Prasad Mohapatra, Durga.  2020.  JavaScript malware behaviour analysis and detection using sandbox assisted ensemble model. 2020 IEEE REGION 10 CONFERENCE (TENCON). :864—869.

Whenever any internet user visits a website, a scripting language runs in the background known as JavaScript. The embedding of malicious activities within the script poses a great threat to the cyberworld. Attackers take advantage of the dynamic nature of the JavaScript and embed malicious code within the website to download malware and damage the host. JavaScript developers obfuscate the script to keep it shielded from getting detected by the malware detectors. In this paper, we propose a novel technique for analysing and detecting JavaScript using sandbox assisted ensemble model. We extract the payload using malware-jail sandbox to get the real script. Upon getting the extracted script, we analyse it to define the features that are needed for creating the dataset. We compute Pearson's r between every feature for feature extraction. An ensemble model consisting of Sequential Minimal Optimization (SMO), Voted Perceptron and AdaBoost algorithm is used with voting technique to detect malicious JavaScript. Experimental results show that our proposed model can detect obfuscated and de-obfuscated malicious JavaScript with an accuracy of 99.6% and 0.03s detection time. Our model performs better than other state-of-the-art models in terms of accuracy and least training and detection time.

Đuranec, A., Gruičić, S., Žagar, M..  2020.  Forensic analysis of Windows 10 Sandbox. 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO). :1224—1229.

With each Windows operating system Microsoft introduces new features to its users. Newly added features present a challenge to digital forensics examiners as they are not analyzed or tested enough. One of the latest features, introduced in Windows 10 version 1909 is Windows Sandbox; a lightweight, temporary, environment for running untrusted applications. Because of the temporary nature of the Sandbox and insufficient documentation, digital forensic examiners are facing new challenges when examining this newly added feature which can be used to hide different illegal activities. Throughout this paper, the focus will be on analyzing different Windows artifacts and event logs, with various tools, left behind as a result of the user interaction with the Sandbox feature on a clear virtual environment. Additionally, the setup of testing environment will be explained, the results of testing and interpretation of the findings will be presented, as well as open-source tools used for the analysis.

Rizvi, Syed R, Lubawy, Andrew, Rattz, John, Cherry, Andrew, Killough, Brian, Gowda, Sanjay.  2020.  A Novel Architecture of Jupyterhub on Amazon Elastic Kubernetes Service for Open Data Cube Sandbox. IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. :3387—3390.

The Open Data Cube (ODC) initiative, with support from the Committee on Earth Observation Satellites (CEOS) System Engineering Office (SEO) has developed a state-of-the-art suite of software tools and products to facilitate the analysis of Earth Observation data. This paper presents a short summary of our novel architecture approach in a project related to the Open Data Cube (ODC) community that provides users with their own ODC sandbox environment. Users can have a sandbox environment all to themselves for the purpose of running Jupyter notebooks that leverage the ODC. This novel architecture layout will remove the necessity of hosting multiple users on a single Jupyter notebook server and provides better management tooling for handling resource usage. In this new layout each user will have their own credentials which will give them access to a personal Jupyter notebook server with access to a fully deployed ODC environment enabling exploration of solutions to problems that can be supported by Earth observation data.