Visible to the public Biblio

Found 176 results

Filters: Keyword is Routing  [Clear All Filters]
2020-02-18
Yu, Bong-yeol, Yang, Gyeongsik, Jin, Heesang, Yoo, Chuck.  2019.  White Visor: Support of White-Box Switch in SDN-Based Network Hypervisor. 2019 International Conference on Information Networking (ICOIN). :242–247.
Network virtualization is a fundamental technology for datacenters and upcoming wireless communications (e.g., 5G). It takes advantage of software-defined networking (SDN) that provides efficient network management by converting networking fabrics into SDN-capable devices. Moreover, white-box switches, which provide flexible and fast packet processing, are broadly deployed in commercial datacenters. A white-box switch requires a specific and restricted packet processing pipeline; however, to date, there has been no SDN-based network hypervisor that can support the pipeline of white-box switches. Therefore, in this paper, we propose WhiteVisor: a network hypervisor which can support the physical network composed of white-box switches. WhiteVisor converts a flow rule from the virtual network into a packet processing pipeline compatible with the white-box switch. We implement the prototype herein and show its feasibility and effectiveness with pipeline conversion and overhead.
Das, Debayan, Nath, Mayukh, Chatterjee, Baibhab, Ghosh, Santosh, Sen, Shreyas.  2019.  S℡LAR: A Generic EM Side-Channel Attack Protection through Ground-Up Root-Cause Analysis. 2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :11–20.
The threat of side-channels is becoming increasingly prominent for resource-constrained internet-connected devices. While numerous power side-channel countermeasures have been proposed, a promising approach to protect the non-invasive electromagnetic side-channel attacks has been relatively scarce. Today's availability of high-resolution electromagnetic (EM) probes mandates the need for a low-overhead solution to protect EM side-channel analysis (SCA) attacks. This work, for the first time, performs a white-box analysis to root-cause the origin of the EM leakage from an integrated circuit. System-level EM simulations with Intel 32 nm CMOS technology interconnect stack, as an example, reveals that the EM leakage from metals above layer 8 can be detected by an external non-invasive attacker with the commercially available state-of-the-art EM probes. Equipped with this `white-box' understanding, this work proposes S℡LAR: Signature aTtenuation Embedded CRYPTO with Low-Level metAl Routing, which is a two-stage solution to eliminate the critical signal radiation from the higher-level metal layers. Firstly, we propose routing the entire cryptographic core within the local lower-level metal layers, whose leakage cannot be picked up by an external attacker. Then, the entire crypto IP is embedded within a Signature Attenuation Hardware (SAH) which in turn suppresses the critical encryption signature before it routes the current signature to the highly radiating top-level metal layers. System-level implementation of the S℡LAR hardware with local lower-level metal routing in TSMC 65 nm CMOS technology, with an AES-128 encryption engine (as an example cryptographic block) operating at 40 MHz, shows that the system remains secure against EM SCA attack even after 1M encryptions, with 67% energy efficiency and 1.23× area overhead compared to the unprotected AES.
2020-02-17
Arshad, Akashah, Hanapi, Zurina Mohd, Subramaniam, Shamala K., Latip, Rohaya.  2019.  Performance Evaluation of the Geographic Routing Protocols Scalability. 2019 International Conference on Information Networking (ICOIN). :396–398.
Scalability is an important design factor for evaluating the performance of routing protocols as the network size or traffic load increases. One of the most appropriate design methods is to use geographic routing approach to ensure scalability. This paper describes a scalability study comparing Secure Region Based Geographic Routing (SRBGR) and Dynamic Window Secure Implicit Geographic Forwarding (DWSIGF) protocols in various network density scenarios based on an end-to-end delay performance metric. The simulation studies were conducted in MATLAB 2106b where the network densities were varied according to the network topology size with increasing traffic rates. The results showed that DWSIGF has a lower end-to-end delay as compared to SRBGR for both sparse (15.4%) and high density (63.3%) network scenarios.Despite SRBGR having good security features, there is a need to improve the performance of its end-to-end delay to fulfil the application requirements.
Marchang, Jims, Ibbotson, Gregg, Wheway, Paul.  2019.  Will Blockchain Technology Become a Reality in Sensor Networks? 2019 Wireless Days (WD). :1–4.
The need for sensors to deliver, communicate, collect, alert, and share information in various applications has made wireless sensor networks very popular. However, due to its limited resources in terms of computation power, battery life and memory storage of the sensor nodes, it is challenging to add security features to provide the confidentiality, integrity, and availability. Blockchain technology ensures security and avoids the need of any trusted third party. However, applying Blockchain in a resource-constrained wireless sensor network is a challenging task because Blockchain is power, computation, and memory hungry in nature and demands heavy bandwidth due to control overheads. In this paper, a new routing and a private communication Blockchain framework is designed and tested with Constant Bit rate (CBR). The proposed Load Balancing Multi-Hop (LBMH) routing shares and enhances the battery life of the Cluster Heads and reduce control overhead during Block updates, but due to limited storage and energy of the sensor nodes, Blockchain in sensor networks may never become a reality unless computation, storage and battery life are readily available at low cost.
Siasi, Nazli, Aldalbahi, Adel, Jasim, Mohammed A..  2019.  Reliable Transmission Scheme Against Security Attacks in Wireless Sensor Networks. 2019 International Symposium on Networks, Computers and Communications (ISNCC). :1–6.
Routing protocols in wireless sensor network are vulnerable to various malicious security attacks that can degrade network performance and lifetime. This becomes more important in cluster routing protocols that is composed of multiple node and cluster head, such as low energy adaptive clustering hierarchy (LEACH) protocol. Namely, if an attack succeeds in failing the cluster head, then the entire set of nodes fail. Therefore, it is necessary to develop robust recovery schemes to overcome security attacks and recover packets at short times. Hence this paper proposes a detection and recovery scheme for selective forwarding attacks in wireless sensor networks using LEACH protocol. The proposed solution features near-instantaneous recovery times, without the requirement for feedback or retransmissions once an attack occurs.
2020-01-27
Persis, D. Jinil.  2019.  A Bi-objective Routing Model for Underwater Wireless Sensor Network. Proceedings of the 2019 3rd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence. :78–82.
Underwater wireless communication is a critical and challenging research area wherein acoustic signals are used to transfer data. The Underwater Wireless Sensor Network (UWSN) is used to transmit data sensed by the sensors in the sea bed to the surface sinks through intermediate nodes for seismic surveillance, border security and underwater environment monitoring applications. The nodes comprising of UWSN are battery operated and are subjected to failures leading to connectivity loss. And the propagation delay in sending the data in the form of acoustic signals is found to be high and as the depth increases the transmission delay also increases. Hence, routing in UWSN is a complex problem. The simulation experiments of the delay sensitive protocols are found to minimize the delay at the expense of network throughput which is not acceptable. The energy aware routing protocols on the other hand reduces energy consumption and routing overhead but has high delay involved in transmission. In this study, transmission delay and reliability estimation models are developed using which bi-objective routing model is proposed considering both delay and reliability in route selection. In the simulation studies, the bi-objective model reduced delay on an average by 9% and the reliability of the network is improved by 34% when compared to the delay sensitive and reliable routing strategies.
2020-01-21
Shen, Qili, Wu, Jun, Li, Jianhua.  2019.  Edge Learning Based Green Content Distribution for Information-Centric Internet of Things. 2019 42nd International Conference on Telecommunications and Signal Processing (TSP). :67–70.
Being the revolutionary future networking architecture, information-centric networking (ICN) conducts network distribution based on content, which is ideally suitable for Internet of things (IoT). With the rapid growth of network traffic, compared to the conventional IoT, information-centric Internet of things (IC-IoT) is expected to provide users with the better satisfaction of the network quality of service (QoS). However, due to IC-IoT requirements of low latency, large data volume, marginalization, and intelligent processing, it urgently needs an efficient content distribution system. In this paper, we propose an edge learning based green content distribution scheme for IC-IoT. We implement intelligent path selection based on decision tree and edge calculation. Moreover, we apply distributed coding based content transmission to enhance the speed and recovery capability of content. Meanwhile, we have verified the effectiveness and performance of this scheme based on a large number of simulation experiments. The work of this paper is of great significance to improve the efficiency and flexibility of content distribution in IC-IoT.
Saadeh, Huda, Almobaideen, Wesam, Sabri, Khair Eddin, Saadeh, Maha.  2019.  Hybrid SDN-ICN Architecture Design for the Internet of Things. 2019 Sixth International Conference on Software Defined Systems (SDS). :96–101.
Internet of Things (IoT) impacts the current network with many challenges due to the variation, heterogeneity of its devices and running technologies. For those reasons, monitoring and controlling network efficiently can rise the performance of the network and adapts network techniques according to environment measurements. This paper proposes a new privacy aware-IoT architecture that combines the benefits of both Information Centric Network (ICN) and Software Defined Network (SDN) paradigms. In this architecture controlling functionalities are distributed over multiple planes: operational plane which is considered as smart ICN data plane with Controllers that control local clusters, tactical plane which is an Edge environment to take controlling decisions based on small number of clusters, and strategic plane which is a cloud controlling environment to make long-term decision that affects the whole network. Deployment options of this architecture is discussed and SDN enhancement due to in-network caching is evaluated.
2020-01-13
Verma, Abhishek, Ranga, Virender.  2019.  ELNIDS: Ensemble Learning based Network Intrusion Detection System for RPL based Internet of Things. 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU). :1–6.
Internet of Things is realized by a large number of heterogeneous smart devices which sense, collect and share data with each other over the internet in order to control the physical world. Due to open nature, global connectivity and resource constrained nature of smart devices and wireless networks the Internet of Things is susceptible to various routing attacks. In this paper, we purpose an architecture of Ensemble Learning based Network Intrusion Detection System named ELNIDS for detecting routing attacks against IPv6 Routing Protocol for Low-Power and Lossy Networks. We implement four different ensemble based machine learning classifiers including Boosted Trees, Bagged Trees, Subspace Discriminant and RUSBoosted Trees. To evaluate proposed intrusion detection model we have used RPL-NIDDS17 dataset which contains packet traces of Sinkhole, Blackhole, Sybil, Clone ID, Selective Forwarding, Hello Flooding and Local Repair attacks. Simulation results show the effectiveness of the proposed architecture. We observe that ensemble of Boosted Trees achieve the highest Accuracy of 94.5% while Subspace Discriminant method achieves the lowest Accuracy of 77.8 % among classifier validation methods. Similarly, an ensemble of RUSBoosted Trees achieves the highest Area under ROC value of 0.98 while lowest Area under ROC value of 0.87 is achieved by an ensemble of Subspace Discriminant among all classifier validation methods. All the implemented classifiers show acceptable performance results.
Farzaneh, Behnam, Montazeri, Mohammad Ali, Jamali, Shahram.  2019.  An Anomaly-Based IDS for Detecting Attacks in RPL-Based Internet of Things. 2019 5th International Conference on Web Research (ICWR). :61–66.
The Internet of Things (IoT) is a concept that allows the networking of various objects of everyday life and communications on the Internet without human interaction. The IoT consists of Low-Power and Lossy Networks (LLN) which for routing use a special protocol called Routing over Low-Power and Lossy Networks (RPL). Due to the resource-constrained nature of RPL networks, they may be exposed to a variety of internal attacks. Neighbor attack and DIS attack are the specific internal attacks at this protocol. This paper presents an anomaly-based lightweight Intrusion Detection System (IDS) based on threshold values for detecting attacks on the RPL protocol. The results of the simulation using Cooja show that the proposed model has a very high True Positive Rate (TPR) and in some cases, it can be 100%, while the False Positive Rate (FPR) is very low. The results show that the proposed model is fully effective in detecting attacks and applicable to large-scale networks.
Yugha, R., Chithra, S..  2019.  Attribute Based Trust Evaluation for Secure RPL Protocol in IoT Environment. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). :1–7.
Internet of Things (IoT) is an advanced automation technology and analytics systems which connected physical objects that have access through the Internet and have their unique flexibility and an ability to be suitable for any environment. There are some critical applications like smart health care system, in which the data collection, sharing and routing through IoT has to be handled in sensitive way. The IPv6 Routing Protocol for LL(Low-power and Lossy) networks (RPL) is the routing protocols to ensure reliable data transfer in 6LOWPAN networks. However, RPL is vulnerable to number of security attacks which creates a major impact on energy consumption and memory requirements which is not suitable for energy constraint networks like IoT. This requires secured RPL protocol to be used for critical data transfer. This paper introduces a novel approach of combining a lightweight LBS (Location Based Service) authentication and Attribute Based Trust Evaluation (ABTE). The algorithm has been implemented for smart health care system and analyzed how its perform in the RPL protocol for IoT constrained environments.
van Kerkhoven, Jason, Charlebois, Nathaniel, Robertson, Alex, Gibson, Brydon, Ahmed, Arslan, Bouida, Zied, Ibnkahla, Mohamed.  2019.  IPv6-Based Smart Grid Communication over 6LoWPAN. 2019 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
Smart Grid is a major element of the Smart City concept that enables two-way communication of energy data between electric utilities and their consumers. These communication technologies are going through sharp modernization to meet future demand growth and to achieve reliability, security, and efficiency of the electric grid. In this paper, we implement an IPv6 based two-way communication system between the transformer agent (TA), installed at local electric transformer and various customer agents (CAs), connected to customer's smart meter. Various homes share their energy usage with the TA which in turn sends the utility's recommendations to the CAs. Raspberry Pi is used as hardware for all the CAs and the TA. We implement a self-healing mesh network between all nodes using OpenLab IEEE 802.15.4 chips and Routing Protocol for Low-Power and Lossy Networks (RPL), and the data is secured by RSA/AES keys. Several tests have been conducted in real environments, inside and outside of Carleton University, to test the performance of this communication network in various obstacle settings. In this paper, we highlight the details behind the implementation of this IPv6-based smart grid communication system, the related challenges, and the proposed solutions.
Guanyu, Chen, Yunjie, Han, Chang, Li, Changrui, Lin, Degui, Fang, Xiaohui, Rong.  2019.  Data Acquisition Network and Application System Based on 6LoWPAN and IPv6 Transition Technology. 2019 IEEE 2nd International Conference on Electronics Technology (ICET). :78–83.
In recent years, IPv6 will gradually replace IPv4 with IPv4 address exhaustion and the rapid development of the Low-Power Wide-Area network (LPWAN) wireless communication technology. This paper proposes a data acquisition and application system based on 6LoWPAN and IPv6 transition technology. The system uses 6LoWPAN and 6to4 tunnel to realize integration of the internal sensor network and Internet to improve the adaptability of the gateway and reduce the average forwarding delay and packet loss rate of small data packet. Moreover, we design and implement the functions of device access management, multiservice data storage and affair data service by combining the C/S architecture with the actual uploaded river quality data. The system has the advantages of flexible networking, low power consumption, rich IPv6 address, high communication security, and strong reusability.
2019-12-30
Tootaghaj, Diman Zad, Farhat, Farshid, Pakravan, Mohammad-Reza, Aref, Mohammad-Reza.  2011.  Game-theoretic approach to mitigate packet dropping in wireless Ad-hoc networks. 2011 IEEE Consumer Communications and Networking Conference (CCNC). :163–165.
Performance of routing is severely degraded when misbehaving nodes drop packets instead of properly forwarding them. In this paper, we propose a Game-Theoretic Adaptive Multipath Routing (GTAMR) protocol to detect and punish selfish or malicious nodes which try to drop information packets in routing phase and defend against collaborative attacks in which nodes try to disrupt communication or save their power. Our proposed algorithm outranks previous schemes because it is resilient against attacks in which more than one node coordinate their misbehavior and can be used in networks which wireless nodes use directional antennas. We then propose a game theoretic strategy, ERTFT, for nodes to promote cooperation. In comparison with other proposed TFT-like strategies, ours is resilient to systematic errors in detection of selfish nodes and does not lead to unending death spirals.
2019-12-18
M, Suchitra, S M, Renuka, Sreerekha, Lingaraj K..  2018.  DDoS Prevention Using D-PID. 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS). :453-457.

In recent years, the attacks on systems have increased and among such attack is Distributed Denial of Service (DDoS) attack. The path identifiers (PIDs) used for inter-domain routing are static, which makes it easier the attack easier. To address this vulnerability, this paper addresses the usage of Dynamic Path Identifiers (D-PIDs) for routing. The PID of inter-domain path connector is kept oblivious and changes dynamically, thus making it difficult to attack the system. The prototype designed with major components like client, server and router analyses the outcome of D-PID usage instead of PIDs. The results show that, DDoS attacks can be effectively prevented if Dynamic Path Identifiers (D-PIDs) are used instead of Static Path Identifiers (PIDs).

Guleria, Charu, Verma, Harsh Kumar.  2018.  Improved Detection and Mitigation of DDoS Attack in Vehicular ad hoc Network. 2018 4th International Conference on Computing Communication and Automation (ICCCA). :1–4.
Vehicular ad hoc networks (VANETs) are eminent type of Mobile ad hoc Networks. The network created in VANETs is quite prone to security problem. In this work, a new mechanism is proposed to study the security of VANETs against DDoS attack. The proposed mechanism focuses on distributed denial of service attacks. The main idea of the paper is to detect the DDoS attack and mitigate it. The work consists of two stages, initially attack topology and network congestion is created. The second stage is to detect and mitigate the DDoS attack. The existing method is compared with the proposed method for mitigating DDoS attacks in VANETs. The existing solutions presented by the various researchers are also compared and analyzed. The solution for such kind of problem is provided which is used to detect and mitigate DDoS attack by using greedy approach. The network environment is created using NS-2. The results of simulation represent that the proposed approach is better in the terms of network packet loss, routing overhead and network throughput.
2019-12-16
Zhou, Liming, Shan, Yingzi, Chen, Xiaopan.  2019.  An Anonymous Routing Scheme for Preserving Location Privacy in Wireless Sensor Networks. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :262-265.

Wireless sensor networks consist of various sensors that are deployed to monitor the physical world. And many existing security schemes use traditional cryptography theory to protect message content and contextual information. However, we are concerned about location security of nodes. In this paper, we propose an anonymous routing strategy for preserving location privacy (ARPLP), which sets a proxy source node to hide the location of real source node. And the real source node randomly selects several neighbors as receivers until the packets are transmitted to the proxy source. And the proxy source is randomly selected so that the adversary finds it difficult to obtain the location information of the real source node. Meanwhile, our scheme sets a branch area around the sink, which can disturb the adversary by increasing the routing branch. According to the analysis and simulation experiments, our scheme can reduce traffic consumption and communication delay, and improve the security of source node and base station.

2019-11-26
Pradhan, Srikanta, Tripathy, Somanath, Nandi, Sukumar.  2018.  Blockchain Based Security Framework for P2P Filesharing System. 2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). :1-6.

Peer to Peer (P2P) is a dynamic and self-organized technology, popularly used in File sharing applications to achieve better performance and avoids single point of failure. The popularity of this network has attracted many attackers framing different attacks including Sybil attack, Routing Table Insertion attack (RTI) and Free Riding. Many mitigation methods are also proposed to defend or reduce the impact of such attacks. However, most of those approaches are protocol specific. In this work, we propose a Blockchain based security framework for P2P network to address such security issues. which can be tailored to any P2P file-sharing system.

2019-11-04
Daoud, Luka, Rafla, Nader.  2018.  Routing Aware and Runtime Detection for Infected Network-on-Chip Routers. 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS). :775-778.

Network-on-Chip (NoC) architecture is the communication heart of the processing cores in Multiprocessors System-on-Chip (MPSoC), where messages are routed from a source to a destination through intermediate nodes. Therefore, NoC has become a target to security attacks. By experiencing outsourcing design, NoC can be infected with a malicious Hardware Trojans (HTs) which potentially degrade the system performance or leave a backdoor for secret key leaking. In this paper, we propose a HT model that applies a denial of service attack by misrouting the packets, which causes deadlock and consequently degrading the NoC performance. We present a secure routing algorithm that provides a runtime HT detection and avoiding scheme. Results show that our proposed model has negligible overhead in area and power, 0.4% and 0.6%, respectively.

2019-09-09
Jim, L. E., Gregory, M. A..  2018.  AIS Reputation Mechanism in MANET. 2018 28th International Telecommunication Networks and Applications Conference (ITNAC). :1-6.

In Mobile Ad hoc Networks (MANET) the nodes act as a host as well as a router thereby forming a self-organizing network that does not rely upon fixed infrastructure, other than gateways to other networks. MANET provides a quick to deploy flexible networking capability with a dynamic topology due to node mobility. MANET nodes transmit, relay and receive traffic from neighbor nodes as the network topology changes. Security is important for MANET and trust computation is used to improve collaboration between nodes. MANET trust frameworks utilize real-time trust computations to maintain the trust state for nodes in the network. If the trust computation is not resilient against attack, the trust values computed could be unreliable. This paper proposes an Artificial Immune System based approach to compute trust and thereby provide a resilient reputation mechanism.

Karlsson, J., Dooley, L. S., Pulkkis, G..  2018.  Secure Routing for MANET Connected Internet of Things Systems. 2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud). :114-119.

This paper presents a contemporary review of communication architectures and topographies for MANET-connected Internet-of-Things (IoT) systems. Routing protocols for multi-hop MANETs are analyzed with a focus on the standardized Routing Protocol for Low-power and Lossy Networks. Various security threats and vulnerabilities in current MANET routing are described and security enhanced routing protocols and trust models presented as methodologies for supporting secure routing. Finally, the paper identifies some key research challenges in the emerging domain of MANET-IoT connectivity.

Tonane, P., Deshpande, S..  2018.  Trust Based Certificate Revocation and Attacks in MANETs. 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT). :1089-1093.

Due to the changing nature of Mobile Ad-Hoc Network (MANET) security is an important concern and hence in this paper, we carryout vector-based trust mechanism, which is established on the behavior of nodes in forwarding and dropping the data packets determines the trust on each node and we are using the Enhanced Certificate Revocation scheme (ECR), which avoid the attacker by blacklisting the blackhole attacker. To enhance more security for node and network, we assign a unique key for every individual node which can avoid most of the attacks in MANET

Abdel-Fattah, F., Farhan, K. A., Al-Tarawneh, F. H., AlTamimi, F..  2019.  Security Challenges and Attacks in Dynamic Mobile Ad Hoc Networks MANETs. 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). :28-33.

Mobile Ad hoc Network (MANET for short) is a new art of wireless technology that connect a group of mobile nodes in a dynamically decentralized fashion without the need of a base station, or a centralized administration, whereas each mobile node can work as a router. MANET topology changes frequently, because of the MANET dynamically formation nature, and freely to move randomly. MANET can function as standalone or can be connected to external networks. Mobile nodes are characterized with minimal human interaction, weight, less memory, and power. Despite all the pros of MANET and the widely spreading in many and critical industries, MANET has some cons and suffers from severe security issues. In this survey we emphasize on the different types of attacks at MANET protocol stack, and show how MANET is vulnerable to those attacks.

Almohaimeed, A., Asaduzzaman, A..  2019.  A Novel Moving Target Defense Technique to Secure Communication Links in Software-Defined Networks. 2019 Fifth Conference on Mobile and Secure Services (MobiSecServ). :1–4.
Software-defined networking (SDN) is a recently developed approach to computer networking that brings a centralized orientation to network control, thereby improving network architecture and management. However, as with any communication environment that involves message transmission among users, SDN is confronted by the ongoing challenge of protecting user privacy. In this “Work in Progress (WIP)” research, we propose an SDN security model that applies the moving target defense (MTD) technique to protect communication links from sensitive data leakages. MTD is a security solution aimed at increasing complexity and uncertainty for attackers by concealing sensitive information that may serve as a gateway from which to launch different types of attacks. The proposed MTD-based security model is intended to protect user identities contained in transmitted messages in a way that prevents network intruders from identifying the real identities of senders and receivers. According to the results from preliminary experiments, the proposed MTD model has potential to protect the identities contained in transmitted messages within communication links. This work will be extended to protect sensitive data if an attacker gets access to the network device.
2019-08-26
Araujo, F., Taylor, T., Zhang, J., Stoecklin, M..  2018.  Cross-Stack Threat Sensing for Cyber Security and Resilience. 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :18-21.

We propose a novel cross-stack sensor framework for realizing lightweight, context-aware, high-interaction network and endpoint deceptions for attacker disinformation, misdirection, monitoring, and analysis. In contrast to perimeter-based honeypots, the proposed method arms production workloads with deceptive attack-response capabilities via injection of booby-traps at the network, endpoint, operating system, and application layers. This provides defenders with new, potent tools for more effectively harvesting rich cyber-threat data from the myriad of attacks launched by adversaries whose identities and methodologies can be better discerned through direct engagement rather than purely passive observations of probe attempts. Our research provides new tactical deception capabilities for cyber operations, including new visibility into both enterprise and national interest networks, while equipping applications and endpoints with attack awareness and active mitigation capabilities.