Visible to the public Biblio

Filters: Keyword is cryptocurrencies  [Clear All Filters]
2021-03-29
Gururaj, P..  2020.  Identity management using permissioned blockchain. 2020 International Conference on Mainstreaming Block Chain Implementation (ICOMBI). :1—3.

Authenticating a person's identity has always been a challenge. While attempts are being made by government agencies to address this challenge, the citizens are being exposed to a new age problem of Identity management. The sharing of photocopies of identity cards in order to prove our identity is a common sight. From score-card to Aadhar-card, the details of our identity has reached many unauthorized hands during the years. In India the identity thefts accounts for 77% [1] of the fraud cases, and the threats are trending. Programs like e-Residency by Estonia[2], Bitnation using Ethereum[3] are being devised for an efficient Identity Management. Even the US Home Land Security is funding a research with an objective of “Design information security and privacy concepts on the Blockchain to support identity management capabilities that increase security and productivity while decreasing costs and security risks for the Homeland Security Enterprise (HSE).” [4] This paper will discuss the challenges specific to India around Identity Management, and the possible solution that the Distributed ledger, hashing algorithms and smart contracts can offer. The logic of hashing the personal data, and controlling the distribution of identity using public-private keys with Blockchain technology will be discussed in this paper.

2021-03-09
Soni, D. K., Sharma, H., Bhushan, B., Sharma, N., Kaushik, I..  2020.  Security Issues Seclusion in Bitcoin System. 2020 IEEE 9th International Conference on Communication Systems and Network Technologies (CSNT). :223—229.

In the dawn of crypto-currencies the most talked currency is Bitcoin. Bitcoin is widely flourished digital currency and an exchange trading commodity implementing peer-to-peer payment network. No central athourity exists in Bitcoin. The users in network or pool of bitcoin need not to use real names, rather they use pseudo names for managing and verifying transactions. Due to the use of pseudo names bitcoin is apprehended to provide anonymity. However, the most transparent payment network is what bitcoin is. Here all the transactions are publicly open. To furnish wholeness and put a stop to double-spending, Blockchain is used, which actually works as a ledger for management of Bitcoins. Blockchain can be misused to monitor flow of bitcoins among multiple transactions. When data from external sources is amalgamated with insinuation acquired from the Blockchain, it may result to reveal user's identity and profile. In this way the activity of user may be traced to an extent to fraud that user. Along with the popularity of Bitcoins the number of adversarial attacks has also gain pace. All these activities are meant to exploit anonymity and privacy in Bitcoin. These acivities result in loss of bitcoins and unlawful profit to attackers. Here in this paper we tried to present analysis of major attacks such as malicious attack, greater than 52% attacks and block withholding attack. Also this paper aims to present analysis and improvements in Bitcoin's anonymity and privacy.

Badawi, E., Jourdan, G.-V., Bochmann, G., Onut, I.-V..  2020.  An Automatic Detection and Analysis of the Bitcoin Generator Scam. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :407—416.

We investigate what we call the "Bitcoin Generator Scam" (BGS), a simple system in which the scammers promise to "generate" new bitcoins using the ones that were sent to them. A typical offer will suggest that, for a small fee, one could receive within minutes twice the amount of bitcoins submitted. BGS is clearly not a very sophisticated attack. The modus operandi is simply to put up some web page on which to find the address to send the money and wait for the payback. The pages are then indexed by search engines, and ready to find for victims looking for free bitcoins. We describe here a generic system to find and analyze scams such as BGS. We have trained a classifier to detect these pages, and we have a crawler searching for instances using a series of search engines. We then monitor the instances that we find to trace payments and bitcoin addresses that are being used over time. Unlike most bitcoin-based scam monitoring systems, we do not rely on analyzing transactions on the blockchain to find scam instances. Instead, we proactively find these instances through the web pages advertising the scam. Thus our system is able to find addresses with very few transactions, or even none at all. Indeed, over half of the addresses that have eventually received funds were detected before receiving any transactions. The data for this paper was collected over four months, from November 2019 to February 2020. We have found more than 1,300 addresses directly associated with the scam, hosted on over 500 domains. Overall, these addresses have received (at least) over 5 million USD to the scam, with an average of 47.3 USD per transaction.

Tikhomirov, S., Moreno-Sanchez, P., Maffei, M..  2020.  A Quantitative Analysis of Security, Anonymity and Scalability for the Lightning Network. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :387—396.

Payment channel networks have been introduced to mitigate the scalability issues inherent to permissionless decentralized cryptocurrencies such as Bitcoin. Launched in 2018, the Lightning Network (LN) has been gaining popularity and consists today of more than 5000 nodes and 35000 payment channels that jointly hold 965 bitcoins (9.2M USD as of June 2020). This adoption has motivated research from both academia and industryPayment channels suffer from security vulnerabilities, such as the wormhole attack [39], anonymity issues [38], and scalability limitations related to the upper bound on the number of concurrent payments per channel [28], which have been pointed out by the scientific community but never quantitatively analyzedIn this work, we first analyze the proneness of the LN to the wormhole attack and attacks against anonymity. We observe that an adversary needs to control only 2% of nodes to learn sensitive payment information (e.g., sender, receiver, and amount) or to carry out the wormhole attack. Second, we study the management of concurrent payments in the LN and quantify its negative effect on scalability. We observe that for micropayments, the forwarding capability of up to 50% of channels is restricted to a value smaller than the channel capacity. This phenomenon hinders scalability and opens the door for denial-of-service attacks: we estimate that a network-wide DoS attack costs within 1.6M USD, while isolating the biggest community costs only 238k USDOur findings should prompt the LN community to consider the issues studied in this work when educating users about path selection algorithms, as well as to adopt multi-hop payment protocols that provide stronger security, privacy and scalability guarantees.

Oosthoek, K., Doerr, C..  2020.  From Hodl to Heist: Analysis of Cyber Security Threats to Bitcoin Exchanges. 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :1—9.

Bitcoin is gaining traction as an alternative store of value. Its market capitalization transcends all other cryptocurrencies in the market. But its high monetary value also makes it an attractive target to cyber criminal actors. Hacking campaigns usually target the weakest points in an ecosystem. In Bitcoin, these are currently the exchange platforms. As each exchange breach potentially decreases Bitcoin's market value by billions, it is a threat not only to direct victims, but to everyone owning Bitcoin. Based on an extensive analysis of 36 breaches of Bitcoin exchanges, we show the attack patterns used to exploit Bitcoin exchange platforms using an industry standard for reporting intelligence on cyber security breaches. Based on this we are able to provide an overview of the most common attack vectors, showing that all except three hacks were possible due to relatively lax security. We also show that while the security regimen of Bitcoin exchanges is not on par with other financial service providers, the use of stolen credentials, which does not require any hacking, is decreasing. We also show that the amount of BTC taken during a breach is decreasing, as well as the exchanges that terminate after being breached. With exchanges being targeted by nation-state hacking groups, security needs to be a first concern.

2021-03-04
Cao, L., Wan, Z..  2020.  Anonymous scheme for blockchain atomic swap based on zero-knowledge proof. 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :371—374.
The blockchain's cross-chain atomic exchange uses smart contracts to replace trusted third parties, but atomic exchange cannot guarantee the anonymity of transactions, and it will inevitably increase the risk of privacy leakage. Therefore, this paper proposes an atom based on zero-knowledge proof. Improved methods of exchange to ensure the privacy of both parties in a transaction. The anonymous improvement scheme in this article uses the UTXO unconsumed model to add a new anonymous list in the blockchain. When sending assets to smart contracts, zero-knowledge proof is used to provide self-certification of ownership of the asset, and then the transaction is broken down. Only the hash value of the transaction is sent to the node, and the discarded list is used to verify the validity of the transaction, which achieves the effect of storing assets anonymously in the smart contract. At the same time, a smart contract is added when the two parties in the transaction communicate to exchange the contract address of the newly set smart contract between the two parties in the transaction. This can prevent the smart contract address information from being stolen when the two parties in the transaction communicate directly.
2021-02-23
Mendiboure, L., Chalouf, M. A., Krief, F..  2020.  A Scalable Blockchain-based Approach for Authentication and Access Control in Software Defined Vehicular Networks. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1—11.
Software Defined Vehicular Networking (SDVN) could be the future of the vehicular networks, enabling interoperability between heterogeneous networks and mobility management. Thus, the deployment of large SDVN is considered. However, SDVN is facing major security issues, in particular, authentication and access control issues. Indeed, an unauthorized SDN controller could modify the behavior of switches (packet redirection, packet drops) and an unauthorized switch could disrupt the operation of the network (reconnaissance attack, malicious feedback). Due to the SDVN features (decentralization, mobility) and the SDVN requirements (flexibility, scalability), the Blockchain technology appears to be an efficient way to solve these authentication and access control issues. Therefore, many Blockchain-based approaches have already been proposed. However, two key challenges have not been addressed: authentication and access control for SDN controllers and high scalability for the underlying Blockchain network. That is why in this paper we propose an innovative and scalable architecture, based on a set of interconnected Blockchain sub-networks. Moreover, an efficient access control mechanism and a cross-sub-networks authentication/revocation mechanism are proposed for all SDVN devices (vehicles, roadside equipment, SDN controllers). To demonstrate the benefits of our approach, its performances are compared with existing solutions in terms of throughput, latency, CPU usage and read/write access to the Blockchain ledger. In addition, we determine an optimal number of Blockchain sub-networks according to different parameters such as the number of certificates to store and the number of requests to process.
Fan, W., Chang, S.-Y., Emery, S., Zhou, X..  2020.  Blockchain-based Distributed Banking for Permissioned and Accountable Financial Transaction Processing. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1—9.

Distributed banking platforms and services forgo centralized banks to process financial transactions. For example, M-Pesa provides distributed banking service in the developing regions so that the people without a bank account can deposit, withdraw, or transfer money. The current distributed banking systems lack the transparency in monitoring and tracking of distributed banking transactions and thus do not support auditing of distributed banking transactions for accountability. To address this issue, this paper proposes a blockchain-based distributed banking (BDB) scheme, which uses blockchain technology to leverage its built-in properties to record and track immutable transactions. BDB supports distributed financial transaction processing but is significantly different from cryptocurrencies in its design properties, simplicity, and computational efficiency. We implement a prototype of BDB using smart contract and conduct experiments to show BDB's effectiveness and performance. We further compare our prototype with the Ethereum cryptocurrency to highlight the fundamental differences and demonstrate the BDB's superior computational efficiency.

2021-02-10
Aktepe, S., Varol, C., Shashidhar, N..  2020.  MiNo: The Chrome Web Browser Add-on Application to Block the Hidden Cryptocurrency Mining Activities. 2020 8th International Symposium on Digital Forensics and Security (ISDFS). :1—5.

Cryptocurrencies are the digital currencies designed to replace the regular cash money while taking place in our daily lives especially for the last couple of years. Mining cryptocurrencies are one of the popular ways to have them and make a profit due to unstable values in the market. This attracts attackers to utilize malware on internet users' computer resources, also known as cryptojacking, to mine cryptocurrencies. Cryptojacking started to be a major issue in the internet world. In this case, we developed MiNo, a web browser add-on application to detect these malicious mining activities running without the user's permission or knowledge. This add-on provides security and efficiency for the computer resources of the internet users. MiNo designed and developed with double-layer protection which makes it ahead of its competitors in the market.

Tanana, D., Tanana, G..  2020.  Advanced Behavior-Based Technique for Cryptojacking Malware Detection. 2020 14th International Conference on Signal Processing and Communication Systems (ICSPCS). :1—4.
With rising value and popularity of cryptocurrencies, they inevitably attract cybercriminals seeking illicit profits within blockchain ecosystem. Two of the most popular methods are ransomware and cryptojacking. Ransomware, being the first and more obvious threat has been extensively studied in the past. Unlike that, scientists have often neglected cryptojacking, because it’s less obvious and less harmful than ransomware. In this paper, we’d like to propose enhanced detection program to combat cryptojacking, additionally briefly touching history of cryptojacking, also known as malicious mining and reviewing most notable previous attempts to detect and combat cryptojacking. The review would include out previous work on malicious mining detection and our current detection program is based on its previous iteration, which mostly used CPU usage heuristics to detect cryptojacking. However, we will include additional metrics for malicious mining detection, such as network usage and calls to cryptographic libraries, which result in a 93% detection rate against the selected number of cryptojacking samples, compared to 81% rate achieved in previous work. Finally, we’ll discuss generalization of proposed detection technique to include GPU cryptojackers.
Tizio, G. Di, Ngo, C. Nam.  2020.  Are You a Favorite Target For Cryptojacking? A Case-Control Study On The Cryptojacking Ecosystem 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :515—520.
Illicitly hijacking visitors' computational resources for mining cryptocurrency via compromised websites is a consolidated activity.Previous works mainly focused on large-scale analysis of the cryptojacking ecosystem, technical means to detect browser-based mining as well as economic incentives of cryptojacking. So far, no one has studied if certain technical characteristics of a website can increase (decrease) the likelihood of being compromised for cryptojacking campaigns.In this paper, we propose to address this unanswered question by conducting a case-control study with cryptojacking websites obtained crawling the web using Minesweeper. Our preliminary analysis shows some association for certain website characteristics, however, the results obtained are not statistically significant. Thus, more data must be collected and further analysis must be conducted to obtain a better insight into the impact of these relations.
Tanana, D..  2020.  Behavior-Based Detection of Cryptojacking Malware. 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :0543—0545.
With rise of cryptocurrency popularity and value, more and more cybercriminals seek to profit using that new technology. Most common ways to obtain illegitimate profit using cryptocurrencies are ransomware and cryptojacking also known as malicious mining. And while ransomware is well-known and well-studied threat which is obvious by design, cryptojacking is often neglected because it's less harmful and much harder to detect. This article considers question of cryptojacking detection. Brief history and definition of cryptojacking are described as well as reasons for designing custom detection technique. We also propose complex detection technique based on CPU load by an application, which can be applied to both browser-based and executable-type cryptojacking samples. Prototype detection program based on our technique was designed using decision tree algorithm. The program was tested in a controlled virtual machine environment and achieved 82% success rate against selected number of cryptojacking samples. Finally, we'll discuss generalization of proposed technique for future work.
2021-02-08
Noel, M. D., Waziri, O. V., Abdulhamid, M. S., Ojeniyi, A. J., Okoro, M. U..  2020.  Comparative Analysis of Classical and Post-quantum Digital Signature Algorithms used in Bitcoin Transactions. 2020 2nd International Conference on Computer and Information Sciences (ICCIS). :1–6.

The use of public key cryptosystems ranges from securely encrypting bitcoin transactions and creating digital signatures for non-repudiation. The cryptographic systems security of public key depends on the complexity in solving mathematical problems. Quantum computers pose a threat to the current day algorithms used. This research presents analysis of two Hash-based Signature Schemes (MSS and W-OTS) and provides a comparative analysis of them. The comparisons are based on their efficiency as regards to their key generation, signature generation and verification time. These algorithms are compared with two classical algorithms (RSA and ECDSA) used in bitcoin transaction security. The results as shown in table II indicates that RSA key generation takes 0.2012s, signature generation takes 0.0778s and signature verification is 0.0040s. ECDSA key generation is 0.1378s, signature generation takes 0.0187s, and verification time for the signature is 0.0164s. The W-OTS key generation is 0.002s. To generate a signature in W-OTS, it takes 0.001s and verification time for the signature is 0.0002s. Lastly MSS Key generation, signature generation and verification has high values which are 16.290s, 17.474s, and 13.494s respectively. Based on the results, W-OTS is recommended for bitcoin transaction security because of its efficiency and ability to resist quantum computer attacks on the bitcoin network.

2021-01-28
Javed, M. U., Jamal, A., Javaid, N., Haider, N., Imran, M..  2020.  Conditional Anonymity enabled Blockchain-based Ad Dissemination in Vehicular Ad-hoc Network. 2020 International Wireless Communications and Mobile Computing (IWCMC). :2149—2153.

Advertisement sharing in vehicular network through vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication is a fascinating in-vehicle service for advertisers and the users due to multiple reasons. It enable advertisers to promote their product or services in the region of their interest. Also the users get to receive more relevant ads. Usually, users tend to contribute in dissemination of ads if their privacy is preserved and if some incentive is provided. Recent researches have focused on enabling both of the parameters for the users by developing fair incentive mechanism which preserves privacy by using Zero-Knowledge Proof of Knowledge (ZKPoK) (Ming et al., 2019). However, the anonymity provided by ZKPoK can introduce internal attacker scenarios in the network due to which authenticated users can disseminate fake ads in the network without payment. As the existing scheme uses certificate-less cryptography, due to which malicious users cannot be removed from the network. In order to resolve these challenges, we employed conditional anonymity and introduced Monitoring Authority (MA) in the system. In our proposed scheme, the pseudonyms are assigned to the vehicles while their real identities are stored in Certification Authority (CA) in encrypted form. The pseudonyms are updated after a pre-defined time threshold to prevent behavioural privacy leakage. We performed security and performance analysis to show the efficiency of our proposed system.

2021-01-18
Qiu, J., Lu, X., Lin, J..  2019.  Optimal Selection of Cryptographic Algorithms in Blockchain Based on Fuzzy Analytic Hierarchy Process. 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS). :208–212.
As a collection of innovative technologies, blockchain has solved the problem of reliable transmission and exchange of information on untrusted networks. The underlying implementation is the basis for the reliability of blockchain, which consists of various cryptographic algorithms for the use of identity authentication and privacy protection of distributed ledgers. The cryptographic algorithm plays a vital role in the blockchain, which guarantees the confidentiality, integrity, verifiability and non-repudiation of the blockchain. In order to get the most suitable cryptographic algorithm for the blockchain system, this paper proposed a method using Fuzzy Analytic Hierarchy Process (FAHP) to evaluate and score the comprehensive performance of the three types of cryptographic algorithms applied in the blockchain, including symmetric cryptographic algorithms, asymmetric cryptographic algorithms and hash algorithms. This paper weighs the performance differences of cryptographic algorithms considering the aspects of security, operational efficiency, language and hardware support and resource consumption. Finally, three cryptographic algorithms are selected that are considered to be the most suitable ones for block-chain systems, namely ECDSA, sha256 and AES. This result is also consistent with the most commonly used cryptographic algorithms in the current blockchain development direction. Therefore, the reliability and practicability of the algorithm evaluation pro-posed in this paper has been proved.
Huitzil, I., Fuentemilla, Á, Bobillo, F..  2020.  I Can Get Some Satisfaction: Fuzzy Ontologies for Partial Agreements in Blockchain Smart Contracts. 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–8.
This paper proposes a novel extension of blockchain systems with fuzzy ontologies. The main advantage is to let the users have flexible restrictions, represented using fuzzy sets, and to develop smart contracts where there is a partial agreement among the involved parts. We propose a general architecture based on four fuzzy ontologies and a process to develop and run the smart contracts, based on a reduction to a well-known fuzzy ontology reasoning task (Best Satisfiability Degree). We also investigate different operators to compute Pareto-optimal solutions and implement our approach in the Ethereum blockchain.
2020-12-21
Huang, H., Zhou, S., Lin, J., Zhang, K., Guo, S..  2020.  Bridge the Trustworthiness Gap amongst Multiple Domains: A Practical Blockchain-based Approach. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
In isolated network domains, global trustworthiness (e.g., consistent network view) is critical to the multiple-domain business partners who aim to perform the trusted corporations depending on each isolated network view. However, to achieve such global trustworthiness across distributed network domains is a challenge. This is because when multiple-domain partners are required to exchange their local domain views with each other, it is difficult to ensure the data trustworthiness among them. In addition, the isolated domain view in each partner is prone to be destroyed by malicious falsification attacks. To this end, we propose a blockchain-based approach that can ensure the trustworthiness among multiple-party domains. In this paper, we mainly present the design and implementation of the proposed trustworthiness-protection system. A cloud-based prototype and a local testbed are developed based on Ethereum. Finally, experimental results demonstrate the effectiveness of the proposed prototype and testbed.
2020-12-14
Pilet, A. B., Frey, D., Taïani, F..  2020.  Foiling Sybils with HAPS in Permissionless Systems: An Address-based Peer Sampling Service. 2020 IEEE Symposium on Computers and Communications (ISCC). :1–6.
Blockchains and distributed ledgers have brought renewed interest in Byzantine fault-tolerant protocols and decentralized systems, two domains studied for several decades. Recent promising works have in particular proposed to use epidemic protocols to overcome the limitations of popular Blockchain mechanisms, such as proof-of-stake or proof-of-work. These works unfortunately assume a perfect peer-sampling service, immune to malicious attacks, a property that is difficult and costly to achieve. We revisit this fundamental problem in this paper, and propose a novel Byzantine-tolerant peer-sampling service that is resilient to Sybil attacks in open systems by exploiting the underlying structure of wide-area networks.
2020-11-23
Zhu, L., Dong, H., Shen, M., Gai, K..  2019.  An Incentive Mechanism Using Shapley Value for Blockchain-Based Medical Data Sharing. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :113–118.
With the development of big data and machine learning techniques, medical data sharing for the use of disease diagnosis has received considerable attention. Blockchain, as an emerging technology, has been widely used to resolve the efficiency and security issues in medical data sharing. However, the existing studies on blockchain-based medical data sharing have rarely concerned about the reasonable incentive mechanism. In this paper, we propose a cooperation model where medical data is shared via blockchain. We derive the topological relationships among the participants consisting of data owners, miners and third parties, and gradually develop the computational process of Shapley value revenue distribution. Specifically, we explore the revenue distribution under different consensuses of blockchain. Finally, we demonstrate the incentive effect and rationality of the proposed solution by analyzing the revenue distribution.
2020-11-17
Tosh, D. K., Shetty, S., Foytik, P., Njilla, L., Kamhoua, C. A..  2018.  Blockchain-Empowered Secure Internet -of- Battlefield Things (IoBT) Architecture. MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM). :593—598.

Internet of Things (IoT) technology is emerging to advance the modern defense and warfare applications because the battlefield things, such as combat equipment, warfighters, and vehicles, can sense and disseminate information from the battlefield to enable real-time decision making on military operations and enhance autonomy in the battlefield. Since this Internet-of-Battlefield Things (IoBT) environment is highly heterogeneous in terms of devices, network standards, platforms, connectivity, and so on, it introduces trust, security, and privacy challenges when battlefield entities exchange information with each other. To address these issues, we propose a Blockchain-empowered auditable platform for IoBT and describe its architectural components, such as battlefield-sensing layer, network layer, and consensus and service layer, in depth. In addition to the proposed layered architecture, this paper also presents several open research challenges involved in each layer to realize the Blockchain-enabled IoBT platform.

2020-11-16
Choudhury, O., Sylla, I., Fairoza, N., Das, A..  2019.  A Blockchain Framework for Ensuring Data Quality in Multi-Organizational Clinical Trials. 2019 IEEE International Conference on Healthcare Informatics (ICHI). :1–9.
The cost and complexity of conducting multi-site clinical trials have significantly increased over time, with site monitoring, data management, and Institutional Review Board (IRB) amendments being key drivers. Trial sponsors, such as pharmaceutical companies, are also increasingly outsourcing trial management to multiple organizations. Enforcing compliance with standard operating procedures, such as preserving data privacy for human subject protection, is crucial for upholding the integrity of a study and its findings. Current efforts to ensure quality of data collected at multiple sites and by multiple organizations lack a secure, trusted, and efficient framework for fragmented data capture. To address this challenge, we propose a novel data management infrastructure based on a permissioned blockchain with private channels, smart contracts, and distributed ledgers. We use an example multi-organizational clinical trial to design and implement a blockchain network: generate activity-specific private channels to segregate data flow for confidentiality, write channel-specific smart contracts to enforce regulatory guidelines, monitor the immutable transaction log to detect protocol breach, and auto-generate audit trail. Through comprehensive experimental study, we demonstrate that our system handles high-throughput transactions, exhibits low-latency, and constitutes a trusted, scalable solution.
2020-11-09
Bose, S., Raikwar, M., Mukhopadhyay, D., Chattopadhyay, A., Lam, K..  2018.  BLIC: A Blockchain Protocol for Manufacturing and Supply Chain Management of ICS. 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :1326–1335.
Blockchain technology has brought a huge paradigm shift in multiple industries, by integrating distributed ledger, smart contracts and consensus protocol under the same roof. Notable applications of blockchain include cryptocurrencies and large-scale multi-party transaction management systems. The latter fits very well into the domain of manufacturing and supply chain management for Integrated Circuits (IC), which, despite several advanced technologies, is vulnerable to malicious practices, such as overproduction, IP piracy and deleterious design modification to gain unfair advantages. To combat these threats, researchers have proposed several ideas like hardware metering, design obfuscation, split manufacturing and watermarking. In this paper, we show, how these issues can be complementarily dealt with using blockchain technology coupled with identity-based encryption and physical unclonable functions, for improved resilience against certain adversarial motives. As part of our proposed blockchain protocol, titled `BLIC', we propose an authentication mechanism to secure both active and passive IC transactions, and a composite consensus protocol designed for IC supply chains. We also present studies on the security, scalability, privacy and anonymity of the BLIC protocol.
2020-09-28
Kandah, Farah, Cancelleri, Joseph, Reising, Donald, Altarawneh, Amani, Skjellum, Anthony.  2019.  A Hardware-Software Codesign Approach to Identity, Trust, and Resilience for IoT/CPS at Scale. 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :1125–1134.
Advancement in communication technologies and the Internet of Things (IoT) is driving adoption in smart cities that aims to increase operational efficiency and improve the quality of services and citizen welfare, among other potential benefits. The privacy, reliability, and integrity of communications must be ensured so that actions can be appropriate, safe, accurate, and implemented promptly after receiving actionable information. In this work, we present a multi-tier methodology consisting of an authentication and trust-building/distribution framework designed to ensure the safety and validity of the information exchanged in the system. Blockchain protocols and Radio Frequency-Distinct Native Attributes (RF-DNA) combine to provide a hardware-software codesigned system for enhanced device identity and overall system trustworthiness. Our threat model accounts for counterfeiting, breakout fraud, and bad mouthing of one entity by others. Entity trust (e.g., IoT devices) depends on quality and level of participation, quality of messages, lifetime of a given entity in the system, and the number of known "bad" (non-consensus) messages sent by that entity. Based on this approach to trust, we are able to adjust trust upward and downward as a function of real-time and past behavior, providing other participants with a trust value upon which to judge information from and interactions with the given entity. This approach thereby reduces the potential for manipulation of an IoT system by a bad or byzantine actor.
Mitani, Tatsuo, OTSUKA, Akira.  2019.  Traceability in Permissioned Blockchain. 2019 IEEE International Conference on Blockchain (Blockchain). :286–293.
In this paper, we propose the traceability of assets in a permissioned blockchain connected with a permissionless blockchain. We make traceability of assets in the permissioned blockchain be defined and be expressed as a hidden Markov model. There exists no dishonest increase and decrease of assets in this model. The condition is called balance. As we encrypt this model with fully homomorphic encryption and apply the zero knowledge proof of plaintext knowledge, we show that the trace-ability and balance of the permissioned blockchain are able to be proved in zero knowledge to the permissionless blockchain with concealing the asset allocation of the permissioned blockchain.
Li, Jing, Liu, Tingting, Niyato, Dusit, Wang, Ping, Li, Jun, Han, Zhu.  2019.  Contract-Based Approach for Security Deposit in Blockchain Networks with Shards. 2019 IEEE International Conference on Blockchain (Blockchain). :75–82.
As a decentralized ledger technology, blockchain is considered to be a potential solution for applications with highly concentrated management mechanism. However, most of the existing blockchain networks are employed with the hash-puzzle-solving consensus protocol, known as proof-of-work. The competition of solving the puzzle introduces high latency, which directly leads to a long transaction-processing time. One solution of this dilemma is to establish a blockchain network with shards. In this paper, we focus on the blockchain network with shards and adopt the security-deposit based consensus protocol, studying the problem of how to balance the security incentive and the economic incentive. Also, the inherent features of the blockchain, i.e., anonymity and decentralization, introduce the information asymmetric issue between the beacon chain and the participants. The contract theory is utilized to formulate the problem between them. As such, the optimal rewards related to the different types of validators can be obtained, as well as the reasonable deposits accordingly. Compared with the fixed deposits, the flexible deposits can provide enough economic incentive for the participants without losing the security incentives. Besides, the simulation results demonstrate that the contract theory approach is capable of maximizing the beacon chain's utility and satisfying the incentive compatibility and individual rationality of the participants.