Visible to the public Biblio

Filters: Keyword is malware classification  [Clear All Filters]
ManiArasuSekar, KannanMani S., Swaminathan, Paveethran, Murali, Ritwik, Ratan, Govind K., Siva, Surya V..  2020.  Optimal Feature Selection for Non-Network Malware Classification. 2020 International Conference on Inventive Computation Technologies (ICICT). :82—87.
In this digital age, almost every system and service has moved from a localized to a digital environment. Consequently the number of attacks targeting both personal as well as commercial digital devices has also increased exponentially. In most cases specific malware attacks have caused widespread damage and emotional anguish. Though there are automated techniques to analyse and thwart such attacks, they are still far from perfect. This paper identifies optimal features, which improves the accuracy and efficiency of the classification process, required for malware classification in an attempt to assist automated anti-malware systems identify and block malware families in an attempt to secure the end user and reduce the damage caused by these malicious software.
Slawinski, M., Wortman, A..  2019.  Applications of Graph Integration to Function Comparison and Malware Classification. 2019 4th International Conference on System Reliability and Safety (ICSRS). :16—24.

We classify .NET files as either benign or malicious by examining directed graphs derived from the set of functions comprising the given file. Each graph is viewed probabilistically as a Markov chain where each node represents a code block of the corresponding function, and by computing the PageRank vector (Perron vector with transport), a probability measure can be defined over the nodes of the given graph. Each graph is vectorized by computing Lebesgue antiderivatives of hand-engineered functions defined on the vertex set of the given graph against the PageRank measure. Files are subsequently vectorized by aggregating the set of vectors corresponding to the set of graphs resulting from decompiling the given file. The result is a fast, intuitive, and easy-to-compute glass-box vectorization scheme, which can be leveraged for training a standalone classifier or to augment an existing feature space. We refer to this vectorization technique as PageRank Measure Integration Vectorization (PMIV). We demonstrate the efficacy of PMIV by training a vanilla random forest on 2.5 million samples of decompiled. NET, evenly split between benign and malicious, from our in-house corpus and compare this model to a baseline model which leverages a text-only feature space. The median time needed for decompilation and scoring was 24ms. 11Code available at

Vi, Bao Ngoc, Noi Nguyen, Huu, Nguyen, Ngoc Tran, Truong Tran, Cao.  2019.  Adversarial Examples Against Image-based Malware Classification Systems. 2019 11th International Conference on Knowledge and Systems Engineering (KSE). :1—5.

Malicious software, known as malware, has become urgently serious threat for computer security, so automatic mal-ware classification techniques have received increasing attention. In recent years, deep learning (DL) techniques for computer vision have been successfully applied for malware classification by visualizing malware files and then using DL to classify visualized images. Although DL-based classification systems have been proven to be much more accurate than conventional ones, these systems have been shown to be vulnerable to adversarial attacks. However, there has been little research to consider the danger of adversarial attacks to visualized image-based malware classification systems. This paper proposes an adversarial attack method based on the gradient to attack image-based malware classification systems by introducing perturbations on resource section of PE files. The experimental results on the Malimg dataset show that by a small interference, the proposed method can achieve success attack rate when challenging convolutional neural network malware classifiers.

Xylogiannopoulos, Konstantinos F., Karampelas, Panagiotis, Alhajj, Reda.  2019.  Text Mining for Malware Classification Using Multivariate All Repeated Patterns Detection. 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). :887—894.

Mobile phones have become nowadays a commodity to the majority of people. Using them, people are able to access the world of Internet and connect with their friends, their colleagues at work or even unknown people with common interests. This proliferation of the mobile devices has also been seen as an opportunity for the cyber criminals to deceive smartphone users and steel their money directly or indirectly, respectively, by accessing their bank accounts through the smartphones or by blackmailing them or selling their private data such as photos, credit card data, etc. to third parties. This is usually achieved by installing malware to smartphones masking their malevolent payload as a legitimate application and advertise it to the users with the hope that mobile users will install it in their devices. Thus, any existing application can easily be modified by integrating a malware and then presented it as a legitimate one. In response to this, scientists have proposed a number of malware detection and classification methods using a variety of techniques. Even though, several of them achieve relatively high precision in malware classification, there is still space for improvement. In this paper, we propose a text mining all repeated pattern detection method which uses the decompiled files of an application in order to classify a suspicious application into one of the known malware families. Based on the experimental results using a real malware dataset, the methodology tries to correctly classify (without any misclassification) all randomly selected malware applications of 3 categories with 3 different families each.

Choi, Seok-Hwan, Shin, Jin-Myeong, Liu, Peng, Choi, Yoon-Ho.  2019.  Robustness Analysis of CNN-based Malware Family Classification Methods Against Various Adversarial Attacks. 2019 IEEE Conference on Communications and Network Security (CNS). :1—6.

As malware family classification methods, image-based classification methods have attracted much attention. Especially, due to the fast classification speed and the high classification accuracy, Convolutional Neural Network (CNN)-based malware family classification methods have been studied. However, previous studies on CNN-based classification methods focused only on improving the classification accuracy of malware families. That is, previous studies did not consider the cases that the accuracy of CNN-based malware classification methods can be decreased under the existence of adversarial attacks. In this paper, we analyze the robustness of various CNN-based malware family classification models under adversarial attacks. While adding imperceptible non-random perturbations to the input image, we measured how the accuracy of the CNN-based malware family classification model can be affected. Also, we showed the influence of three significant visualization parameters(i.e., the size of input image, dimension of input image, and conversion color of a special character)on the accuracy variation under adversarial attacks. From the evaluation results using the Microsoft malware dataset, we showed that even the accuracy over 98% of the CNN-based malware family classification method can be decreased to less than 7%.

Roseline, S. Abijah, Sasisri, A. D., Geetha, S., Balasubramanian, C..  2019.  Towards Efficient Malware Detection and Classification using Multilayered Random Forest Ensemble Technique. 2019 International Carnahan Conference on Security Technology (ICCST). :1—6.

The exponential growth rate of malware causes significant security concern in this digital era to computer users, private and government organizations. Traditional malware detection methods employ static and dynamic analysis, which are ineffective in identifying unknown malware. Malware authors develop new malware by using polymorphic and evasion techniques on existing malware and escape detection. Newly arriving malware are variants of existing malware and their patterns can be analyzed using the vision-based method. Malware patterns are visualized as images and their features are characterized. The alternative generation of class vectors and feature vectors using ensemble forests in multiple sequential layers is performed for classifying malware. This paper proposes a hybrid stacked multilayered ensembling approach which is robust and efficient than deep learning models. The proposed model outperforms the machine learning and deep learning models with an accuracy of 98.91%. The proposed system works well for small-scale and large-scale data since its adaptive nature of setting parameters (number of sequential levels) automatically. It is computationally efficient in terms of resources and time. The method uses very fewer hyper-parameters compared to deep neural networks.

Priyamvada Davuluru, Venkata Salini, Narayanan Narayanan, Barath, Balster, Eric J..  2019.  Convolutional Neural Networks as Classification Tools and Feature Extractors for Distinguishing Malware Programs. 2019 IEEE National Aerospace and Electronics Conference (NAECON). :273—278.

Classifying malware programs is a research area attracting great interest for Anti-Malware industry. In this research, we propose a system that visualizes malware programs as images and distinguishes those using Convolutional Neural Networks (CNNs). We study the performance of several well-established CNN based algorithms such as AlexNet, ResNet and VGG16 using transfer learning approaches. We also propose a computationally efficient CNN-based architecture for classification of malware programs. In addition, we study the performance of these CNNs as feature extractors by using Support Vector Machine (SVM) and K-nearest Neighbors (kNN) for classification purposes. We also propose fusion methods to boost the performance further. We make use of the publicly available database provided by Microsoft Malware Classification Challenge (BIG 2015) for this study. Our overall performance is 99.4% for a set of 2174 test samples comprising 9 different classes thereby setting a new benchmark.

Wei, Qu, Xiao, Shi, Dongbao, Li.  2019.  Malware Classification System Based on Machine Learning. 2019 Chinese Control And Decision Conference (CCDC). :647—652.

The main challenge for malware researchers is the large amount of data and files that need to be evaluated for potential threats. Researchers analyze a large number of new malware daily and classify them in order to extract common features. Therefore, a system that can ensure and improve the efficiency and accuracy of the classification is of great significance for the study of malware characteristics. A high-performance, high-efficiency automatic classification system based on multi-feature selection fusion of machine learning is proposed in this paper. Its performance and efficiency, according to our experiments, have been greatly improved compared to single-featured systems.

Mahajan, Ginika, Saini, Bhavna, Anand, Shivam.  2019.  Malware Classification Using Machine Learning Algorithms and Tools. 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP). :1—8.

Malware classification is the process of categorizing the families of malware on the basis of their signatures. This work focuses on classifying the emerging malwares on the basis of comparable features of similar malwares. This paper proposes a novel framework that categorizes malware samples into their families and can identify new malware samples for analysis. For this six diverse classification techniques of machine learning are used. To get more comparative and thus accurate classification results, analysis is done using two different tools, named as Knime and Orange. The work proposed can help in identifying and thus cleaning new malwares and classifying malware into their families. The correctness of family classification of malwares is investigated in terms of confusion matrix, accuracy and Cohen's Kappa. After evaluation it is analyzed that Random Forest gives the highest accuracy.

Tran, Trung Kien, Sato, Hiroshi, Kubo, Masao.  2019.  Image-Based Unknown Malware Classification with Few-Shot Learning Models. 2019 Seventh International Symposium on Computing and Networking Workshops (CANDARW). :401—407.

Knowing malware types in every malware attacks is very helpful to the administrators to have proper defense policies for their system. It must be a massive benefit for the organization as well as the social if the automatic protection systems could themselves detect, classify an existence of new malware types in the whole network system with a few malware samples. This feature helps to prevent the spreading of malware as soon as any damage is caused to the networks. An approach introduced in this paper takes advantage of One-shot/few-shot learning algorithms in solving the malware classification problems by using some well-known models such as Matching Networks, Prototypical Networks. To demonstrate an efficiency of the approach, we run the experiments on the two malware datasets (namely, MalImg and Microsoft Malware Classification Challenge), and both experiments all give us very high accuracies. We confirm that if applying models correctly from the machine learning area could bring excellent performance compared to the other traditional methods, open a new area of malware research.

Lo, Wai Weng, Yang, Xu, Wang, Yapeng.  2019.  An Xception Convolutional Neural Network for Malware Classification with Transfer Learning. 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1—5.

In this work, we applied a deep Convolutional Neural Network (CNN) with Xception model to perform malware image classification. The Xception model is a recently developed special CNN architecture that is more powerful with less over- fitting problems than the current popular CNN models such as VGG16. However only a few use cases of the Xception model can be found in literature, and it has never been used to solve the malware classification problem. The performance of our approach was compared with other methods including KNN, SVM, VGG16 etc. The experiments on two datasets (Malimg and Microsoft Malware Dataset) demonstrated that the Xception model can achieve the highest training accuracy than all other approaches including the champion approach, and highest validation accuracy than all other approaches including VGG16 model which are using image-based malware classification (except the champion solution as this information was not provided). Additionally, we proposed a novel ensemble model to combine the predictions from .bytes files and .asm files, showing that a lower logloss can be achieved. Although the champion on the Microsoft Malware Dataset achieved a bit lower logloss, our approach does not require any features engineering, making it more effective to adapt to any future evolution in malware, and very much less time consuming than the champion's solution.

Jiang, Jianguo, Li, Song, Yu, Min, Li, Gang, Liu, Chao, Chen, Kai, Liu, Hui, Huang, Weiqing.  2019.  Android Malware Family Classification Based on Sensitive Opcode Sequence. 2019 IEEE Symposium on Computers and Communications (ISCC). :1—7.

Android malware family classification is an advanced task in Android malware analysis, detection and forensics. Existing methods and models have achieved a certain success for Android malware detection, but the accuracy and the efficiency are still not up to the expectation, especially in the context of multiple class classification with imbalanced training data. To address those challenges, we propose an Android malware family classification model by analyzing the code's specific semantic information based on sensitive opcode sequence. In this work, we construct a sensitive semantic feature-sensitive opcode sequence using opcodes, sensitive APIs, STRs and actions, and propose to analyze the code's specific semantic information, generate a semantic related vector for Android malware family classification based on this feature. Besides, aiming at the families with minority, we adopt an oversampling technique based on the sensitive opcode sequence. Finally, we evaluate our method on Drebin dataset, and select the top 40 malware families for experiments. The experimental results show that the Total Accuracy and Average AUC (Area Under Curve, AUC) reach 99.50% and 98.86% with 45. 17s per Android malware, and even if the number of malware families increases, these results remain good.

Sethi, Kamalakanta, Kumar, Rahul, Sethi, Lingaraj, Bera, Padmalochan, Patra, Prashanta Kumar.  2019.  A Novel Machine Learning Based Malware Detection and Classification Framework. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–4.
As time progresses, new and complex malware types are being generated which causes a serious threat to computer systems. Due to this drastic increase in the number of malware samples, the signature-based malware detection techniques cannot provide accurate results. Different studies have demonstrated the proficiency of machine learning for the detection and classification of malware files. Further, the accuracy of these machine learning models can be improved by using feature selection algorithms to select the most essential features and reducing the size of the dataset which leads to lesser computations. In this paper, we have developed a machine learning based malware analysis framework for efficient and accurate malware detection and classification. We used Cuckoo sandbox for dynamic analysis which executes malware in an isolated environment and generates an analysis report based on the system activities during execution. Further, we propose a feature extraction and selection module which extracts features from the report and selects the most important features for ensuring high accuracy at minimum computation cost. Then, we employ different machine learning algorithms for accurate detection and fine-grained classification. Experimental results show that we got high detection and classification accuracy in comparison to the state-of-the-art approaches.
Jung, Byungho, Kim, Taeguen, Im, Eul Gyu.  2018.  Malware Classification Using Byte Sequence Information. Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems. :143–148.

The number of new malware and new malware variants have been increasing continuously. Security experts analyze malware to capture the malicious properties of malware and to generate signatures or detection rules, but the analysis overheads keep increasing with the increasing number of malware. To analyze a large amount of malware, various kinds of automatic analysis methods are in need. Recently, deep learning techniques such as convolutional neural network (CNN) and recurrent neural network (RNN) have been applied for malware classifications. The features used in the previous approches are mostly based on API (Application Programming Interface) information, and the API invocation information can be obtained through dynamic analysis. However, the invocation information may not reflect malicious behaviors of malware because malware developers use various analysis avoidance techniques. Therefore, deep learning-based malware analysis using other features still need to be developed to improve malware analysis performance. In this paper, we propose a malware classification method using the deep learning algorithm based on byte information. Our proposed method uses images generated from malware byte information that can reflect malware behavioral context, and the convolutional neural network-based sentence analysis is used to process the generated images. We performed several experiments to show the effecitveness of our proposed method, and the experimental results show that our method showed higher accuracy than the naive CNN model, and the detection accuracy was about 99%.

Sethi, Kamalakanta, Chaudhary, Shankar Kumar, Tripathy, Bata Krishan, Bera, Padmalochan.  2018.  A Novel Malware Analysis Framework for Malware Detection and Classification Using Machine Learning Approach. Proceedings of the 19th International Conference on Distributed Computing and Networking. :49:1–49:4.

Nowadays, the digitization of the world is under a serious threat due to the emergence of various new and complex malware every day. Due to this, the traditional signature-based methods for detection of malware effectively become an obsolete method. The efficiency of the machine learning techniques in context to the detection of malwares has been proved by state-of-the-art research works. In this paper, we have proposed a framework to detect and classify different files (e.g., exe, pdf, php, etc.) as benign and malicious using two level classifier namely, Macro (for detection of malware) and Micro (for classification of malware files as a Trojan, Spyware, Ad-ware, etc.). Our solution uses Cuckoo Sandbox for generating static and dynamic analysis report by executing the sample files in the virtual environment. In addition, a novel feature extraction module has been developed which functions based on static, behavioral and network analysis using the reports generated by the Cuckoo Sandbox. Weka Framework is used to develop machine learning models by using training datasets. The experimental results using the proposed framework shows high detection rate and high classification rate using different machine learning algorithms

Tran, T. K., Sato, H., Kubo, M..  2018.  One-Shot Learning Approach for Unknown Malware Classification. 2018 5th Asian Conference on Defense Technology (ACDT). :8-13.

Early detection of new kinds of malware always plays an important role in defending the network systems. Especially, if intelligent protection systems could themselves detect an existence of new malware types in their system, even with a very small number of malware samples, it must be a huge benefit for the organization as well as the social since it help preventing the spreading of that kind of malware. To deal with learning from few samples, term ``one-shot learning'' or ``fewshot learning'' was introduced, and mostly used in computer vision to recognize images, handwriting, etc. An approach introduced in this paper takes advantage of One-shot learning algorithms in solving the malware classification problem by using Memory Augmented Neural Network in combination with malware's API calls sequence, which is a very valuable source of information for identifying malware behavior. In addition, it also use some advantages of the development in Natural Language Processing field such as word2vec, etc. to convert those API sequences to numeric vectors before feeding to the one-shot learning network. The results confirm very good accuracies compared to the other traditional methods.

Kargaard, J., Drange, T., Kor, A., Twafik, H., Butterfield, E..  2018.  Defending IT Systems against Intelligent Malware. 2018 IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT). :411-417.

The increasing amount of malware variants seen in the wild is causing problems for Antivirus Software vendors, unable to keep up by creating signatures for each. The methods used to develop a signature, static and dynamic analysis, have various limitations. Machine learning has been used by Antivirus vendors to detect malware based on the information gathered from the analysis process. However, adversarial examples can cause machine learning algorithms to miss-classify new data. In this paper we describe a method for malware analysis by converting malware binaries to images and then preparing those images for training within a Generative Adversarial Network. These unsupervised deep neural networks are not susceptible to adversarial examples. The conversion to images from malware binaries should be faster than using dynamic analysis and it would still be possible to link malware families together. Using the Generative Adversarial Network, malware detection could be much more effective and reliable.

Roseline, S. A., Geetha, S..  2018.  Intelligent Malware Detection Using Oblique Random Forest Paradigm. 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI). :330-336.

With the increase in the popularity of computerized online applications, the analysis, and detection of a growing number of newly discovered stealthy malware poses a significant challenge to the security community. Signature-based and behavior-based detection techniques are becoming inefficient in detecting new unknown malware. Machine learning solutions are employed to counter such intelligent malware and allow performing more comprehensive malware detection. This capability leads to an automatic analysis of malware behavior. The proposed oblique random forest ensemble learning technique is efficient for malware classification. The effectiveness of the proposed method is demonstrated with three malware classification datasets from various sources. The results are compared with other variants of decision tree learning models. The proposed system performs better than the existing system in terms of classification accuracy and false positive rate.

Udayakumar, N., Saglani, V. J., Cupta, A. V., Subbulakshmi, T..  2018.  Malware Classification Using Machine Learning Algorithms. 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI). :1-9.

Lately, we are facing the Malware crisis due to various types of malware or malicious programs or scripts available in the huge virtual world - the Internet. But, what is malware? Malware can be a malicious software or a program or a script which can be harmful to the user's computer. These malicious programs can perform a variety of functions, including stealing, encrypting or deleting sensitive data, altering or hijacking core computing functions and monitoring users' computer activity without their permission. There are various entry points for these programs and scripts in the user environment, but only one way to remove them is to find them and kick them out of the system which isn't an easy job as these small piece of script or code can be anywhere in the user system. This paper involves the understanding of different types of malware and how we will use Machine Learning to detect these malwares.

Jiang, J., Yin, Q., Shi, Z., Li, M..  2018.  Comprehensive Behavior Profiling Model for Malware Classification. 2018 IEEE Symposium on Computers and Communications (ISCC). :00129-00135.

In view of the great threat posed by malware and the rapid growing trend about malware variants, it is necessary to determine the category of new samples accurately for further analysis and taking appropriate countermeasures. The network behavior based classification methods have become more popular now. However, the behavior profiling models they used usually only depict partial network behavior of samples or require specific traffic selection in advance, which may lead to adverse effects on categorizing advanced malware with complex activities. In this paper, to overcome the shortages of traditional models, we raise a comprehensive behavior model for profiling the behavior of malware network activities. And we also propose a corresponding malware classification method which can extract and compare the major behavior of samples. The experimental and comparison results not only demonstrate our method can categorize samples accurately in both criteria, but also prove the advantage of our profiling model to two other approaches in accuracy performance, especially under scenario based criteria.

Kim, C. H., Kabanga, E. K., Kang, S..  2018.  Classifying Malware Using Convolutional Gated Neural Network. 2018 20th International Conference on Advanced Communication Technology (ICACT). :40-44.

Malware or Malicious Software, are an important threat to information technology society. Deep Neural Network has been recently achieving a great performance for the tasks of malware detection and classification. In this paper, we propose a convolutional gated recurrent neural network model that is capable of classifying malware to their respective families. The model is applied to a set of malware divided into 9 different families and that have been proposed during the Microsoft Malware Classification Challenge in 2015. The model shows an accuracy of 92.6% on the available dataset.

Kalash, M., Rochan, M., Mohammed, N., Bruce, N. D. B., Wang, Y., Iqbal, F..  2018.  Malware Classification with Deep Convolutional Neural Networks. 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1-5.

In this paper, we propose a deep learning framework for malware classification. There has been a huge increase in the volume of malware in recent years which poses a serious security threat to financial institutions, businesses and individuals. In order to combat the proliferation of malware, new strategies are essential to quickly identify and classify malware samples so that their behavior can be analyzed. Machine learning approaches are becoming popular for classifying malware, however, most of the existing machine learning methods for malware classification use shallow learning algorithms (e.g. SVM). Recently, Convolutional Neural Networks (CNN), a deep learning approach, have shown superior performance compared to traditional learning algorithms, especially in tasks such as image classification. Motivated by this success, we propose a CNN-based architecture to classify malware samples. We convert malware binaries to grayscale images and subsequently train a CNN for classification. Experiments on two challenging malware classification datasets, Malimg and Microsoft malware, demonstrate that our method achieves better than the state-of-the-art performance. The proposed method achieves 98.52% and 99.97% accuracy on the Malimg and Microsoft datasets respectively.

Kornish, D., Geary, J., Sansing, V., Ezekiel, S., Pearlstein, L., Njilla, L..  2018.  Malware Classification Using Deep Convolutional Neural Networks. 2018 IEEE Applied Imagery Pattern Recognition Workshop (AIPR). :1-6.

In recent years, deep convolution neural networks (DCNNs) have won many contests in machine learning, object detection, and pattern recognition. Furthermore, deep learning techniques achieved exceptional performance in image classification, reaching accuracy levels beyond human capability. Malware variants from similar categories often contain similarities due to code reuse. Converting malware samples into images can cause these patterns to manifest as image features, which can be exploited for DCNN classification. Techniques for converting malware binaries into images for visualization and classification have been reported in the literature, and while these methods do reach a high level of classification accuracy on training datasets, they tend to be vulnerable to overfitting and perform poorly on previously unseen samples. In this paper, we explore and document a variety of techniques for representing malware binaries as images with the goal of discovering a format best suited for deep learning. We implement a database for malware binaries from several families, stored in hexadecimal format. These malware samples are converted into images using various approaches and are used to train a neural network to recognize visual patterns in the input and classify malware based on the feature vectors. Each image type is assessed using a variety of learning models, such as transfer learning with existing DCNN architectures and feature extraction for support vector machine classifier training. Each technique is evaluated in terms of classification accuracy, result consistency, and time per trial. Our preliminary results indicate that improved image representation has the potential to enable more effective classification of new malware.

Alsulami, B., Mancoridis, S..  2018.  Behavioral Malware Classification Using Convolutional Recurrent Neural Networks. 2018 13th International Conference on Malicious and Unwanted Software (MALWARE). :103-111.

Behavioral malware detection aims to improve on the performance of static signature-based techniques used by anti-virus systems, which are less effective against modern polymorphic and metamorphic malware. Behavioral malware classification aims to go beyond the detection of malware by also identifying a malware's family according to a naming scheme such as the ones used by anti-virus vendors. Behavioral malware classification techniques use run-time features, such as file system or network activities, to capture the behavioral characteristic of running processes. The increasing volume of malware samples, diversity of malware families, and the variety of naming schemes given to malware samples by anti-virus vendors present challenges to behavioral malware classifiers. We describe a behavioral classifier that uses a Convolutional Recurrent Neural Network and data from Microsoft Windows Prefetch files. We demonstrate the model's improvement on the state-of-the-art using a large dataset of malware families and four major anti-virus vendor naming schemes. The model is effective in classifying malware samples that belong to common and rare malware families and can incrementally accommodate the introduction of new malware samples and families.

Kim, H. M., Song, H. M., Seo, J. W., Kim, H. K..  2018.  Andro-Simnet: Android Malware Family Classification Using Social Network Analysis. 2018 16th Annual Conference on Privacy, Security and Trust (PST). :1-8.

While the rapid adaptation of mobile devices changes our daily life more conveniently, the threat derived from malware is also increased. There are lots of research to detect malware to protect mobile devices, but most of them adopt only signature-based malware detection method that can be easily bypassed by polymorphic and metamorphic malware. To detect malware and its variants, it is essential to adopt behavior-based detection for efficient malware classification. This paper presents a system that classifies malware by using common behavioral characteristics along with malware families. We measure the similarity between malware families with carefully chosen features commonly appeared in the same family. With the proposed similarity measure, we can classify malware by malware's attack behavior pattern and tactical characteristics. Also, we apply community detection algorithm to increase the modularity within each malware family network aggregation. To maintain high classification accuracy, we propose a process to derive the optimal weights of the selected features in the proposed similarity measure. During this process, we find out which features are significant for representing the similarity between malware samples. Finally, we provide an intuitive graph visualization of malware samples which is helpful to understand the distribution and likeness of the malware networks. In the experiment, the proposed system achieved 97% accuracy for malware classification and 95% accuracy for prediction by K-fold cross-validation using the real malware dataset.