Visible to the public Biblio

Filters: Keyword is smart home  [Clear All Filters]
2020-12-21
Sanila, A., Mahapatra, B., Turuk, A. K..  2020.  Performance Evaluation of RPL protocol in a 6LoWPAN based Smart Home Environment. 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA). :1–6.
The advancement in technologies like IoT, device-to-device communication lead to concepts like smart home and smart cities, etc. In smart home architecture, different devices such as home appliances, personal computers, surveillance cameras, etc. are connected to the Internet and enable the user to monitor and control irrespective of time and location. IPv6-enabled 6LoWPAN is a low-power, low-range communication protocol designed and developed for the short-range IoT applications. 6LoWPAN is based on IEEE 802.15.4 protocol and IPv6 network protocol for low range wireless applications. Although 6LoWPAN supports different routing protocols, RPL is the widely used routing protocol for low power and lossy networks. In this work, we have taken an IoT enabled smart home environment, in which 6LoWPAN is used as a communication and RPL as a routing protocol. The performance of this proposed network model is analyzed based on the different performance metrics such as latency, PDR, and throughput. The proposed model is simulated using Cooja simulator running over the Contiki OS. Along with the Cooja simulator, the network analyzer tool Wireshark is used to analyze the network behaviors.
2020-12-17
Kumar, R., Sarupria, G., Panwala, V., Shah, S., Shah, N..  2020.  Power Efficient Smart Home with Voice Assistant. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—5.

The popularity and demand of home automation has increased exponentially in recent years because of the ease it provides. Recently, development has been done in this domain and few systems have been proposed that either use voice assistants or application for controlling the electrical appliances. However; less emphasis is laid on power efficiency and this system cannot be integrated with the existing appliances and hence, the entire system needs to be upgraded adding to a lot of additional cost in purchasing new appliances. In this research, the objective is to design such a system that emphasises on power efficiency as well as can be integrated with the already existing appliances. NodeMCU, along with Raspberry Pi, Firebase realtime database, is used to create a system that accomplishes such endeavours and can control relays, which can control these appliances without the need of replacing them. The experiments in this paper demonstrate triggering of electrical appliances using voice assistant, fire alarm on the basis of flame sensor and temperature sensor. Moreover; use of android application was presented for operating electrical appliances from a remote location. Lastly, the system can be modified by adding security cameras, smart blinds, robot vacuums etc.

2020-11-23
Ramapatruni, S., Narayanan, S. N., Mittal, S., Joshi, A., Joshi, K..  2019.  Anomaly Detection Models for Smart Home Security. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :19–24.
Recent years have seen significant growth in the adoption of smart homes devices. These devices provide convenience, security, and energy efficiency to users. For example, smart security cameras can detect unauthorized movements, and smoke sensors can detect potential fire accidents. However, many recent examples have shown that they open up a new cyber threat surface. There have been several recent examples of smart devices being hacked for privacy violations and also misused so as to perform DDoS attacks. In this paper, we explore the application of big data and machine learning to identify anomalous activities that can occur in a smart home environment. A Hidden Markov Model (HMM) is trained on network level sensor data, created from a test bed with multiple sensors and smart devices. The generated HMM model is shown to achieve an accuracy of 97% in identifying potential anomalies that indicate attacks. We present our approach to build this model and compare with other techniques available in the literature.
2020-08-17
Paudel, Ramesh, Muncy, Timothy, Eberle, William.  2019.  Detecting DoS Attack in Smart Home IoT Devices Using a Graph-Based Approach. 2019 IEEE International Conference on Big Data (Big Data). :5249–5258.
The use of the Internet of Things (IoT) devices has surged in recent years. However, due to the lack of substantial security, IoT devices are vulnerable to cyber-attacks like Denial-of-Service (DoS) attacks. Most of the current security solutions are either computationally expensive or unscalable as they require known attack signatures or full packet inspection. In this paper, we introduce a novel Graph-based Outlier Detection in Internet of Things (GODIT) approach that (i) represents smart home IoT traffic as a real-time graph stream, (ii) efficiently processes graph data, and (iii) detects DoS attack in real-time. The experimental results on real-world data collected from IoT-equipped smart home show that GODIT is more effective than the traditional machine learning approaches, and is able to outperform current graph-stream anomaly detection approaches.
2020-08-03
Ferraris, Davide, Fernandez-Gago, Carmen, Daniel, Joshua, Lopez, Javier.  2019.  A Segregated Architecture for a Trust-based Network of Internet of Things. 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC). :1–6.
With the ever-increasing number of smart home devices, the issues related to these environments are also growing. With an ever-growing attack surface, there is no standard way to protect homes and their inhabitants from new threats. The inhabitants are rarely aware of the increased security threats that they are exposed to and how to manage them. To tackle this problem, we propose a solution based on segmented architectures similar to the ones used in industrial systems. In this approach, the smart home is segmented into various levels, which can broadly be categorised into an inner level and external level. The external level is protected by a firewall that checks the communication from/to the Internet to/from the external devices. The internal level is protected by an additional firewall that filters the information and the communications between the external and the internal devices. This segmentation guarantees a trusted environment among the entities of the internal network. In this paper, we propose an adaptive trust model that checks the behaviour of the entities and in case the entities violate trust rules they can be put in quarantine or banned from the network.
2020-06-22
Beheshti-Atashgah, Mohammad, Aref, Mohammd Reza, Bayat, Majid, Barari, Morteza.  2019.  ID-based Strong Designated Verifier Signature Scheme and its Applications in Internet of Things. 2019 27th Iranian Conference on Electrical Engineering (ICEE). :1486–1491.
Strong designated verifier signature scheme is a concept in which a user (signer) can issue a digital signature for a special receiver; i.e. signature is produced in such way that only intended verifier can check the validity of produced signature. Of course, this type of signature scheme should be such that no third party is able to validate the signature. In other words, the related designated verifier cannot assign the issued signature to another third party. This article proposes a new ID-based strong designated verifier signature scheme which has provable security in the ROM (Random Oracle Model) and BDH assumption. The proposed scheme satisfies the all security requirements of an ID-based strong designated verifier signature scheme. In addition, we propose some usage scenarios for the proposed schemes in different applications in the Internet of Things and Cloud Computing era.
2020-06-01
da Silva Andrade, Richardson B., Souto Rosa, Nelson.  2019.  MidSecThings: Assurance Solution for Security Smart Homes in IoT. 2019 IEEE 19th International Symposium on High Assurance Systems Engineering (HASE). :171–178.
The interest over building security-based solutions to reduce the vulnerability exploits and mitigate the risks associated with smart homes in IoT is growing. However, our investigation identified to architect and implement distributed security mechanisms is still a challenge because is necessary to handle security and privacy in IoT middleware with a strong focus. Our investigation, it was identified the significant proportion of the systems that did not address security and did not describe the security approach in any meaningful detail. The idea proposed in this work is to provide middleware aim to implement security mechanisms in smart home and contribute as how guide to beginner developers' IoT middleware. The advantages of using MidSecThings are to avoid leakage data, unavailable service, unidentification action and not authorized access over IoT devices in smart home.
2020-05-11
Memon, Raheel Ahmed, Li, Jianping, Ahmed, Junaid, Khan, Asif, Nazir, M. Irshad, Mangrio, M. Ismail.  2018.  Modeling of Blockchain Based Systems Using Queuing Theory Simulation. 2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :107–111.
Blockchain is the one of leading technology of this time; it has started to revolutionize several fields like, finance, business, industry, smart home, healthcare, social networks, Internet and the Internet of Things. It has many benefits like, decentralized network, robustness, availability, stability, anonymity, auditability and accountability. The applications of Blockchain are emerging, and it is found that most of the work is focused on its engineering implementation. While the theoretical part is very less considered and explored. In this paper we implemented the simulation of mining process in Blockchain based systems using queuing theory. We took the parameters of one of the mature Cryptocurrency, Bitcoin's real data and simulated using M/M/n/L queuing system in JSIMgraph. We have achieved realistic results; and expect that it will open up new research direction in theoretical research of Blockchain based systems.
2020-05-04
Augusto-Gonzalez, J., Collen, A., Evangelatos, S., Anagnostopoulos, M., Spathoulas, G., Giannoutakis, K. M., Votis, K., Tzovaras, D., Genge, B., Gelenbe, E. et al..  2019.  From Internet of Threats to Internet of Things: A Cyber Security Architecture for Smart Homes. 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1–6.
The H2020 European research project GHOST - Safe-Guarding Home IoT Environments with Personalised Real-time Risk Control - aims to deploy a highly effective security framework for IoT smart home residents through a novel reference architecture for user-centric cyber security in smart homes providing an unobtrusive and user-comprehensible solution. The aforementioned security framework leads to a transparent cyber security environment by increasing the effectiveness of the existing cyber security services and enhancing system's self-defence through disruptive software-enabled network security solutions. In this paper, GHOST security framework for IoT-based smart homes is presented. It is aiming to address the security challenges posed by several types of attacks, such as network, device and software. The effective design of the overall multi-layered architecture is analysed, with particular emphasis given to the integration aspects through dynamic and re-configurable solutions and the features provided by each one of the architectural layers. Additionally, real-life trials and the associated use cases are described showcasing the competences and potential of the proposed framework.
2020-01-20
Mei, Shijia, Liu, Zhihong, Zeng, Yong, Yang, Lin, Ma, Jian Feng.  2019.  Listen!: Audio-based Smart IoT Device Pairing Protocol. 2019 IEEE 19th International Conference on Communication Technology (ICCT). :391–397.
Context-based zero-interaction has become the trend for smart IoT device pairing. In this paper, we propose a secure and usable mechanism to authenticate devices co-located in smart home scenario, and build a secure communication channel between legitimate devices by utilizing on-board microphones to capture a common audio context. After receiving randomly generated sound signals, smart IoT device uses the time intervals between salient sound signals to derive audio fingerprint which can be matched among co-present devices and then be used to bootstrap trust of the devices. The protocol is based on the idea that devices co-located within a physical security boundary (e.g., single family house) can hear similar sounds, and the devices outside would miss parts of sound signals due to the attenuation when sounds pass through the wall. To accelerate the generation rate of audio fingerprint, an extra sound source is introduced. We implement our protocol on Android devices, and the experiment results show that the protocol can distinguish the malicious devices outside from the legitimate devices located inside a security boundary and can quickly establish a strong secret-key between legitimate devices.
Giaretta, Alberto, Dragoni, Nicola, Massacci, Fabio.  2019.  Protecting the Internet of Things with Security-by-Contract and Fog Computing. 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). :1–6.

Nowadays, the Internet of Things (IoT) is a consolidated reality. Smart homes are equipped with a growing number of IoT devices that capture more and more information about human beings lives. However, manufacturers paid little or no attention to security, so that various challenges are still in place. In this paper, we propose a novel approach to secure IoT systems that combines the concept of Security-by-Contract (S×C) with the Fog computing distributed paradigm. We define the pillars of our approach, namely the notions of IoT device contract, Fog node policy and contract-policy matching, the respective life-cycles, and the resulting S×C workflow. To better understand all the concepts of the S×C framework, and highlight its practical feasibility, we use a running case study based on a context-aware system deployed in a real smart home.

2019-11-11
Al-Hasnawi, Abduljaleel, Mohammed, Ihab, Al-Gburi, Ahmed.  2018.  Performance Evaluation of the Policy Enforcement Fog Module for Protecting Privacy of IoT Data. 2018 IEEE International Conference on Electro/Information Technology (EIT). :0951–0957.
The rapid development of the Internet of Things (IoT) results in generating massive amounts of data. Significant portions of these data are sensitive since they reflect (directly or indirectly) peoples' behaviors, interests, lifestyles, etc. Protecting sensitive IoT data from privacy violations is a challenge since these data need to be communicated, processed, analyzed, and stored by public networks, servers, and clouds; most of them are untrusted parties for data owners. We propose a solution for protecting sensitive IoT data called Policy Enforcement Fog Module (PEFM). The major task of the PEFM solution is mandatory enforcement of privacy policies for sensitive IoT data-wherever these data are accessed throughout their entire lifecycle. The key feature of PEFM is its placement within the fog computing infrastructure, which assures that PEFM operates as closely as possible to data sources within the edge. PEFM enforces policies directly for local IoT applications. In contrast, for remote applications, PEFM provides a self-protecting mechanism based on creating and disseminating Active Data Bundles (ADBs). ADBs are software constructs bundling inseparably sensitive data, their privacy policies, and an execution engine able to enforce privacy policies. To prove effectiveness and efficiency of the proposed module, we developed a smart home proof-of-concept scenario. We investigate privacy threats for sensitive IoT data. We run simulation experiments, based on network calculus, for testing performance of the PEFM controls for different network configurations. The results of the simulation show that-even with using from 1 to 5 additional privacy policies for improved data privacy-penalties in terms of execution time and delay are reasonable (approx. 12-15% and 13-19%, respectively). The results also show that PEFM is scalable regarding the number of the real-time constraints for real-time IoT applications.
2019-08-26
Mohammad, Z., Qattam, T. A., Saleh, K..  2019.  Security Weaknesses and Attacks on the Internet of Things Applications. 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). :431–436.

Internet of Things (IoT) is a contemporary concept for connecting the existing things in our environment with the Internet for a sake of making the objects information are accessible from anywhere and anytime to support a modern life style based on the Internet. With the rapid development of the IoT technologies and widely spreading in most of the fields such as buildings, health, education, transportation and agriculture. Thus, the IoT applications require increasing data collection from the IoT devices to send these data to the applications or servers which collect or analyze the data, so it is a very important to secure the data and ensure that do not reach a malicious adversary. This paper reviews some attacks in the IoT applications and the security weaknesses in the IoT environment. In addition, this study presents the challenges of IoT in terms of hardware, network and software. Moreover, this paper summarizes and points to some attacks on the smart car, smart home, smart campus, smart farm and healthcare.

2019-08-05
Pan, G., He, J., Wu, Q., Fang, R., Cao, J., Liao, D..  2018.  Automatic stabilization of Zigbee network. 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD). :224–227.

We present an intelligent system that focus on how to ensure the stability of ZigBee network automatically. First, we discussed on the character of ZigBee compared with WIFI. Pointed out advantage of ZigBee resides in security, stability, low power consumption and better expandability. Second, figuring out the shortcomings of ZigBee on application is that physical limitation of the frequency band and weak ability on diffraction, especially coming across a wall or a door in the actual environment of home. The third, to put forward a method which can be used to ensure the strength of ZigBee signal. The method is to detect the strength of ZigBee relay in advance. And then, to compare it with the threshold value which had been defined in previous. The threshold value of strength of ZigBee is the minimal and tolerable value which can ensure stable transmission of ZigBee. If the detected value is out of the range of threshold, system will prompt up warning message which can be used to hint user to add ZigBee reply between the original ZigBee node and ZigBee gateway.

Thapliyal, H., Ratajczak, N., Wendroth, O., Labrado, C..  2018.  Amazon Echo Enabled IoT Home Security System for Smart Home Environment. 2018 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS). :31–36.

Ever-driven by technological innovation, the Internet of Things (IoT) is continuing its exceptional evolution and growth into the common consumer space. In the wake of these developments, this paper proposes a framework for an IoT home security system that is secure, expandable, and accessible. Congruent with the ideals of the IoT, we are proposing a system utilizing an ultra-low-power wireless sensor network which would interface with a central hub via Bluetooth 4, commonly referred to as Bluetooth Low Energy (BLE), to monitor the home. Additionally, the system would interface with an Amazon Echo to accept user voice commands. The aforementioned central hub would also act as a web server and host an internet accessible configuration page from which users could monitor and customize their system. An internet-connected system would carry the capability to notify the users of system alarms via SMS or email. Finally, this proof of concept is intended to demonstrate expandability into other areas of home automation or building monitoring functions in general.

2019-03-25
Pawlenka, T., Škuta, J..  2018.  Security system based on microcontrollers. 2018 19th International Carpathian Control Conference (ICCC). :344–347.
The article describes design and realization of security system based on single-chip microcontrollers. System includes sensor modules for unauthorized entrance detection based on magnetic contact, measuring carbon monoxide level, movement detection and measuring temperature and humidity. System also includes control unit, control panel and development board Arduino with ethernet interface connected for web server implementation.
2019-02-08
Ghirardello, K., Maple, C., Ng, D., Kearney, P..  2018.  Cyber Security of Smart Homes: Development of a Reference Architecture for Attack Surface Analysis. Living in the Internet of Things: Cybersecurity of the IoT - 2018. :1-10.

Recent advances in pervasive computing have caused a rapid growth of the Smart Home market, where a number of otherwise mundane pieces of technology are capable of connecting to the Internet and interacting with other similar devices. However, with the lack of a commonly adopted set of guidelines, several IT companies are producing smart devices with their own proprietary standards, leading to highly heterogeneous Smart Home systems in which the interoperability of the present elements is not always implemented in the most straightforward manner. As such, understanding the cyber risk of these cyber-physical systems beyond the individual devices has become an almost intractable problem. This paper tackles this issue by introducing a Smart Home reference architecture which facilitates security analysis. Being composed by three viewpoints, it gives a high-level description of the various functions and components needed in a domestic IoT device and network. Furthermore, this document demonstrates how the architecture can be used to determine the various attack surfaces of a home automation system from which its key vulnerabilities can be determined.

2019-01-21
Shen, Sheng, Roy, Nirupam, Guan, Junfeng, Hassanieh, Haitham, Choudhury, Romit Roy.  2018.  MUTE: Bringing IoT to Noise Cancellation. Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication. :282–296.

Active Noise Cancellation (ANC) is a classical area where noise in the environment is canceled by producing anti-noise signals near the human ears (e.g., in Bose's noise cancellation headphones). This paper brings IoT to active noise cancellation by combining wireless communication with acoustics. The core idea is to place an IoT device in the environment that listens to ambient sounds and forwards the sound over its wireless radio. Since wireless signals travel much faster than sound, our ear-device receives the sound in advance of its actual arrival. This serves as a glimpse into the future, that we call lookahead, and proves crucial for real-time noise cancellation, especially for unpredictable, wide-band sounds like music and speech. Using custom IoT hardware, as well as lookahead-aware cancellation algorithms, we demonstrate MUTE, a fully functional noise cancellation prototype that outperforms Bose's latest ANC headphone. Importantly, our design does not need to block the ear - the ear canal remains open, making it comfortable (and healthier) for continuous use.

2018-11-14
Jang, William, Chhabra, Adil, Prasad, Aarathi.  2017.  Enabling Multi-User Controls in Smart Home Devices. Proceedings of the 2017 Workshop on Internet of Things Security and Privacy. :49–54.

The Internet of Things (IoT) devices have expanded into many aspects of everyday life. As these smart home devices grow more popular, security concerns increase. Researchers have modeled the privacy and security threats for smart home devices, but have yet to fully address the problem of unintended user access within the home. Often, smart home devices are purchased by one of the family members and associated with the same family member's account, yet are shared by the entire home. Currently most devices implement a course-grained access control model where someone in the home either has complete access or no access. We provide scenarios that highlight the need for exible authorization control and seamless authentication in IoT devices, especially in multi-user environments. We present design recommendations for IoT device manufacturers to provide fine-grained access control and authentication and describe the challenges to meeting the expectations of all users within a home.

2018-09-12
Alhafidh, B. M. H., Allen, W. H..  2017.  High Level Design of a Home Autonomous System Based on Cyber Physical System Modeling. 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW). :45–52.
The process used to build an autonomous smart home system using Cyber-Physical Systems (CPS) principles has received much attention by researchers and developers. However, there are many challenges during the design and implementation of such a system, such as Portability, Timing, Prediction, and Integrity. This paper presents a novel modeling methodology for a smart home system in the scope of CyberPhysical interface that attempts to overcome these issues. We discuss a high-level design approach that simulates the first three levels of a 5C architecture in CPS layers in a smart home environment. A detailed description of the model design, architecture, and a software implementation via NetLogo simulation have been presented in this paper.
2018-06-11
Ye, F., Qian, Y..  2017.  A Security Architecture for Networked Internet of Things Devices. GLOBECOM 2017 - 2017 IEEE Global Communications Conference. :1–6.

The Internet of Things (IoT) increasingly demonstrates its role in smart services, such as smart home, smart grid, smart transportation, etc. However, due to lack of standards among different vendors, existing networked IoT devices (NoTs) can hardly provide enough security. Moreover, it is impractical to apply advanced cryptographic solutions to many NoTs due to limited computing capability and power supply. Inspired by recent advances in IoT demand, in this paper, we develop an IoT security architecture that can protect NoTs in different IoT scenarios. Specifically, the security architecture consists of an auditing module and two network-level security controllers. The auditing module is designed to have a stand-alone intrusion detection system for threat detection in a NoT network cluster. The two network-level security controllers are designed to provide security services from either network resource management or cryptographic schemes regardless of the NoT security capability. We also demonstrate the proposed IoT security architecture with a network based one-hop confidentiality scheme and a cryptography-based secure link mechanism.

2018-05-24
Al-Hasnawi, Abduljaleel, Lilien, Leszek.  2017.  Pushing Data Privacy Control to the Edge in IoT Using Policy Enforcement Fog Module. Companion Proceedings of The10th International Conference on Utility and Cloud Computing. :145–150.

Some IoT data are time-sensitive and cannot be processed in clouds, which are too far away from IoT devices. Fog computing, located as close as possible to data sources at the edge of IoT systems, deals with this problem. Some IoT data are sensitive and require privacy controls. The proposed Policy Enforcement Fog Module (PEFM), running within a single fog, operates close to data sources connected to their fog, and enforces privacy policies for all sensitive IoT data generated by these data sources. PEFM distinguishes two kinds of fog data processing. First, fog nodes process data for local IoT applications, running within the local fog. All real-time data processing must be local to satisfy real-time constraints. Second, fog nodes disseminate data to nodes beyond the local fog (including remote fogs and clouds) for remote (and non-real-time) IoT applications. PEFM has two components for these two kinds of fog data processing. First, Local Policy Enforcement Module (LPEM), performs direct privacy policy enforcement for sensitive data accessed by local IoT applications. Second, Remote Policy Enforcement Module (RPEM), sets up a mechanism for indirectly enforcing privacy policies for sensitive data sent to remote IoT applications. RPEM is based on creating and disseminating Active Data Bundles-software constructs bundling inseparably sensitive data, their privacy policies, and an execution engine able to enforce privacy policies. To prove effectiveness and efficiency of the solution, we developed a proof-of-concept scenario for a smart home IoT application. We investigate privacy threats for sensitive IoT data and show a framework for using PEFM to overcome these threats.

2018-04-02
Ge, M., Hong, J. B., Alzaid, H., Kim, D. S..  2017.  Security Modeling and Analysis of Cross-Protocol IoT Devices. 2017 IEEE Trustcom/BigDataSE/ICESS. :1043–1048.

In the Internet of Things (IoT), smart devices are connected using various communication protocols, such as Wi-Fi, ZigBee. Some IoT devices have multiple built-in communication modules. If an IoT device equipped with multiple communication protocols is compromised by an attacker using one communication protocol (e.g., Wi-Fi), it can be exploited as an entry point to the IoT network. Another protocol (e.g., ZigBee) of this IoT device could be used to exploit vulnerabilities of other IoT devices using the same communication protocol. In order to find potential attacks caused by this kind of cross-protocol devices, we group IoT devices based on their communication protocols and construct a graphical security model for each group of devices using the same communication protocol. We combine the security models via the cross-protocol devices and compute hidden attack paths traversing different groups of devices. We use two use cases in the smart home scenario to demonstrate our approach and discuss some feasible countermeasures.

2018-01-23
Ulz, T., Pieber, T., Steger, C., Lesjak, C., Bock, H., Matischek, R..  2017.  SECURECONFIG: NFC and QR-code based hybrid approach for smart sensor configuration. 2017 IEEE International Conference on RFID (RFID). :41–46.

In smart factories and smart homes, devices such as smart sensors are connected to the Internet. Independent of the context in which such a smart sensor is deployed, the possibility to change its configuration parameters in a secure way is essential. Existing solutions do provide only minimal security or do not allow to transfer arbitrary configuration data. In this paper, we present an NFC- and QR-code based configuration interface for smart sensors which improves the security and practicability of the configuration altering process while introducing as little overhead as possible. We present a protocol for configuration as well as a hardware extension including a dedicated security controller (SC) for smart sensors. For customers, no additional hardware other than a commercially available smartphone will be necessary which makes the proposed approach highly applicable for smart factory and smart home contexts alike.

2017-12-12
Zhu, X., Badr, Y., Pacheco, J., Hariri, S..  2017.  Autonomic Identity Framework for the Internet of Things. 2017 International Conference on Cloud and Autonomic Computing (ICCAC). :69–79.

The Internet of Things (IoT) will connect not only computers and mobile devices, but it will also interconnect smart buildings, houses, and cities, as well as electrical grids, gas plants, and water networks, automobiles, airplanes, etc. IoT will lead to the development of a wide range of advanced information services that are pervasive, cost-effective, and can be accessed from anywhere and at any time. However, due to the exponential number of interconnected devices, cyber-security in the IoT is a major challenge. It heavily relies on the digital identity concept to build security mechanisms such as authentication and authorization. Current centralized identity management systems are built around third party identity providers, which raise privacy concerns and present a single point of failure. In addition, IoT unconventional characteristics such as scalability, heterogeneity and mobility require new identity management systems to operate in distributed and trustless environments, and uniquely identify a particular device based on its intrinsic digital properties and its relation to its human owner. In order to deal with these challenges, we present a Blockchain-based Identity Framework for IoT (BIFIT). We show how to apply our BIFIT to IoT smart homes to achieve identity self-management by end users. In the context of smart home, the framework autonomously extracts appliances signatures and creates blockchain-based identifies for their appliance owners. It also correlates appliances signatures (low level identities) and owners identifies in order to use them in authentication credentials and to make sure that any IoT entity is behaving normally.