Visible to the public Biblio

Found 317 results

Filters: Keyword is Conferences  [Clear All Filters]
Narayana, V.Lakshman, Midhunchakkaravarthy, Divya.  2020.  A Time Interval Based Blockchain Model for Detection of Malicious Nodes in MANET Using Network Block Monitoring Node. 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA). :852–857.
Mobile Ad Hoc Networks (MANETs) are infrastructure-less networks that are mainly used for establishing communication during the situation where wired network fails. Security related information collection is a fundamental part of the identification of attacks in Mobile Ad Hoc Networks (MANETs). A node should find accessible routes to remaining nodes for information assortment and gather security related information during route discovery for choosing secured routes. During data communication, malicious nodes enter the network and cause disturbances during data transmission and reduce the performance of the system. In this manuscript, a Time Interval Based Blockchain Model (TIBBM) for security related information assortment that identifies malicious nodes in the MANET is proposed. The proposed model builds the Blockchain information structure which is utilized to distinguish malicious nodes at specified time intervals. To perform a malicious node identification process, a Network Block Monitoring Node (NBMN) is selected after route selection and this node will monitor the blocks created by the nodes in the routing table. At long last, NBMN node understands the location of malicious nodes by utilizing the Blocks created. The proposed model is compared with the traditional malicious node identification model and the results show that the proposed model exhibits better performance in malicious node detection.
Walker, Aaron, Sengupta, Shamik.  2020.  Malware Family Fingerprinting Through Behavioral Analysis. 2020 IEEE International Conference on Intelligence and Security Informatics (ISI). :1–5.
Signature-based malware detection is not always effective at detecting polymorphic variants of known malware. Malware signatures are devised to counter known threats, which also limits efficacy against new forms of malware. However, existing signatures do present the ability to classify malware based upon known malicious behavior which occurs on a victim computer. In this paper we present a method of classifying malware by family type through behavioral analysis, where the frequency of system function calls is used to fingerprint the actions of specific malware families. This in turn allows us to demonstrate a machine learning classifier which is capable of distinguishing malware by family affiliation with high accuracy.
Swarna Sugi, S. Shinly, Ratna, S. Raja.  2020.  Investigation of Machine Learning Techniques in Intrusion Detection System for IoT Network. 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS). :1164–1167.
Internet of Things (IoT) combines the internet and physical objects to transfer information among the objects. In the emerging IoT networks, providing security is the major issue. IoT device is exposed to various security issues due to its low computational efficiency. In recent years, the Intrusion Detection System valuable tool deployed to secure the information in the network. This article exposes the Intrusion Detection System (IDS) based on deep learning and machine learning to overcome the security attacks in IoT networks. Long Short-Term Memory (LSTM) and K-Nearest Neighbor (KNN) are used in the attack detection model and performances of those algorithms are compared with each other based on detection time, kappa statistic, geometric mean, and sensitivity. The effectiveness of the developed IDS is evaluated by using Bot-IoT datasets.
Long, Saiqin, Yu, Hao, Li, Zhetao, Tian, Shujuan, Li, Yun.  2020.  Energy Efficiency Evaluation Based on QoS Parameter Specification for Cloud Systems. 2020 IEEE 22nd International Conference on High Performance Computing and Communications; IEEE 18th International Conference on Smart City; IEEE 6th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :27–34.
Energy efficiency evaluation (EEE) is a research difficulty in the field of cloud computing. The current research mainly considers the relevant energy efficiency indicators of cloud systems and weights the interrelationship between energy consumption, system performance and QoS requirements. However, it lacks a combination of subjective and objective, qualitative and quantitative evaluation method to accurately evaluate the energy efficiency of cloud systems. We propose a novel EEE method based on the QoS parameter specification for cloud systems (EEE-QoS). Firstly, it reduces the metric values that affect QoS requirements to the same dimension range and then establishes a belief rule base (BRB). The best-worst method is utilized to determine the initial weights of the premise attributes in the BRB model. Then, the BRB model parameters are optimized by the mean-square error, the activation weight is calculated, and the activation rules of the evidence reasoning algorithm are integrated to evaluate the belief of the conclusion. The quantitative and qualitative evaluation of the energy efficiency of cloud systems is realized. The experiments show that the proposed method can accurately and objectively evaluate the energy efficiency of cloud systems.
Ullman, Steven, Samtani, Sagar, Lazarine, Ben, Zhu, Hongyi, Ampel, Benjamin, Patton, Mark, Chen, Hsinchun.  2020.  Smart Vulnerability Assessment for Scientific Cyberinfrastructure: An Unsupervised Graph Embedding Approach. 2020 IEEE International Conference on Intelligence and Security Informatics (ISI). :1–6.
The accelerated growth of computing technologies has provided interdisciplinary teams a platform for producing innovative research at an unprecedented speed. Advanced scientific cyberinfrastructures, in particular, provide data storage, applications, software, and other resources to facilitate the development of critical scientific discoveries. Users of these environments often rely on custom developed virtual machine (VM) images that are comprised of a diverse array of open source applications. These can include vulnerabilities undetectable by conventional vulnerability scanners. This research aims to identify the installed applications, their vulnerabilities, and how they vary across images in scientific cyberinfrastructure. We propose a novel unsupervised graph embedding framework that captures relationships between applications, as well as vulnerabilities identified on corresponding GitHub repositories. This embedding is used to cluster images with similar applications and vulnerabilities. We evaluate cluster quality using Silhouette, Calinski-Harabasz, and Davies-Bouldin indices, and application vulnerabilities through inspection of selected clusters. Results reveal that images pertaining to genomics research in our research testbed are at greater risk of high-severity shell spawning and data validation vulnerabilities.
Lessio, Nadine, Morris, Alexis.  2020.  Toward Design Archetypes for Conversational Agent Personality. 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :3221–3228.
Conversational agents (CAs), often referred to as chatbots, are being widely deployed within existing commercial frameworks and online service websites. As society moves further into incorporating data rich systems, like the internet of things (IoT), into daily life, it is expected that conversational agents will take on an increasingly important role to help users manage these complex systems. In this, the concept of personality is becoming increasingly important, as we seek for more human-friendly ways to interact with these CAs. In this work a conceptual framework is proposed that considers how existing standard psychological and persona models could be mapped to different kinds of CA functionality outside of strictly dialogue. As CAs become more diverse in their abilities, and more integrated with different kinds of systems, it is important to consider how function can be impacted by the design of agent personality, whether intentionally designed or not. Based on this framework, derived archetype classes of CAs are presented as starting points that can hopefully aid designers, developers, and the curious, into thinking about how to work toward better CA personality development.
Wang, Zizhong, Wang, Haixia, Shao, Airan, Wang, Dongsheng.  2020.  An Adaptive Erasure-Coded Storage Scheme with an Efficient Code-Switching Algorithm. 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS). :1177—1178.
Using erasure codes increases consumption of network traffic and disk I/O tremendously when systems recover data, resulting in high latency of degraded reads. In order to mitigate this problem, we present an adaptive storage scheme based on data access skew, a fact that most data accesses are applied in a small fraction of data. In this scheme, we use both Local Reconstruction Code (LRC), whose recovery cost is low, to store frequently accessed data, and Hitchhiker (HH) code, which guarantees minimum storage cost, to store infrequently accessed data. Besides, an efficient switching algorithm between LRC and HH code with low network and computation costs is provided. The whole system will benefit from low degraded read latency while keeping a low storage overhead, and code-switching will not become a bottleneck.
Shamini, P. Baby, Wise, D. C. Joy Winnie, Megavarshini, K. S., Ramesh, Mudaliar Kritika.  2020.  A Real Time Auditing System using QR Code for Secure Cloud Storage. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). :847—850.
The objective of the project is to structure a portable application for inspecting and putting away information through a distributed storage administration. The information is remotely put away in the cloud. In some distributed storage frameworks, the cloud record may contain some touchy data. Scrambling the entire shared record doesn't permit different clients to get to it. In the current framework the client needs to use the biometric information to guarantee the character of the client and afterward a marking key will be checked which is to ensure the personality and security of the client. The principle downside of utilizing the biometric information is that it can't be coordinated precisely because of the elements that influence the difference in biometric information. A reference id made is naturally changed over to the QR code and it is checked utilizing a scanner and the specific record is downloaded. This record whenever erased or lost in the customer's inward stockpiling it very well may be recovered again from the cloud.
Zhang, Yifei, Gao, Neng, Chen, Junsha.  2020.  A Practical Defense against Attribute Inference Attacks in Session-based Recommendations. 2020 IEEE International Conference on Web Services (ICWS). :355–363.
When users in various web and mobile applications enjoy the convenience of recommendation systems, they are vulnerable to attribute inference attacks. The accumulating online behaviors of users (e.g., clicks, searches, ratings) naturally brings out user preferences, and poses an inevitable threat of privacy that adversaries can infer one's private profiles (e.g., gender, sexual orientation, political view) with AI-based algorithms. Existing defense methods assume the existence of a trusted third party, rely on computationally intractable algorithms, or have impact on recommendation utility. These imperfections make them impractical for privacy preservation in real-life scenarios. In this work, we introduce BiasBooster, a practical proactive defense method based on behavior segmentation, to protect user privacy against attribute inference attacks from user behaviors, while retaining recommendation utility with a heuristic recommendation aggregation module. BiasBooster is a user-centric approach from client side, which proactively divides a user's behaviors into weakly related segments and perform them with several dummy identities, then aggregates real-time recommendations for user from different dummy identities. We estimate its effectiveness of preservation on both privacy and recommendation utility through extensive evaluations on two real-world datasets. A Chrome extension is conducted to demonstrate the feasibility of applying BiasBooster in real world. Experimental results show that compared to existing defenses, BiasBooster substantially reduces the averaged accuracy of attribute inference attacks, with minor utility loss of recommendations.
Sundar, Agnideven Palanisamy, Li, Feng, Zou, Xukai, Hu, Qin, Gao, Tianchong.  2020.  Multi-Armed-Bandit-based Shilling Attack on Collaborative Filtering Recommender Systems. 2020 IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems (MASS). :347–355.
Collaborative Filtering (CF) is a popular recommendation system that makes recommendations based on similar users' preferences. Though it is widely used, CF is prone to Shilling/Profile Injection attacks, where fake profiles are injected into the CF system to alter its outcome. Most of the existing shilling attacks do not work on online systems and cannot be efficiently implemented in real-world applications. In this paper, we introduce an efficient Multi-Armed-Bandit-based reinforcement learning method to practically execute online shilling attacks. Our method works by reducing the uncertainty associated with the item selection process and finds the most optimal items to enhance attack reach. Such practical online attacks open new avenues for research in building more robust recommender systems. We treat the recommender system as a black box, making our method effective irrespective of the type of CF used. Finally, we also experimentally test our approach against popular state-of-the-art shilling attacks.
Kim, Hwajung, Yeom, Heon Young, Son, Yongseok.  2020.  An Efficient Database Backup and Recovery Scheme using Write-Ahead Logging. 2020 IEEE 13th International Conference on Cloud Computing (CLOUD). :405—413.
Many cloud services perform periodic database backup to keep the data safe from failures such as sudden system crashes. In the database system, two techniques are widely used for data backup and recovery: a physical backup and a logical backup. The physical backup uses raw data by copying the files in the database, whereas the logical backup extracts data from the database and dumps it into separated files as a sequence of query statements. Both techniques support a full backup strategy that contains data of the entire database and incremental backup strategy that contains changed data since a previous backup. However, both strategies require additional I/O operations to perform the backup and need a long time to restore a backup. In this paper, we propose an efficient backup and recovery scheme by exploiting write-ahead logging (WAL) in database systems. In the proposed scheme, for backup, we devise a backup system to use log data generated by the existing WAL to eliminate the additional I/O operations. To restore a backup, we utilize and optimize the existing crash recovery procedure of WAL to reduce recovery time. For example, we divide the recovery range and applying the backup data for each range independently via multiple threads. We implement our scheme in MySQL, a popular database management system. The experimental result demonstrates that the proposed scheme provides instant backup while reducing recovery time compared with the existing schemes.
Siledar, Seema, Tamane, Sharvari.  2020.  A distortion-free watermarking approach for verifying integrity of relational databases. 2020 International Conference on Smart Innovations in Design, Environment, Management, Planning and Computing (ICSIDEMPC). :192—195.
Due to high availability and easy accessibility of information, it has become quite difficult to assure security of data. Even though watermarking seems to be an effective solution to protect data, it is still challenging to be used with relational databases. Moreover, inserting a watermark in database may lead to distortion. As a result, the contents of database can no longer remain useful. Our proposed distortion-free watermarking approach ensures that integrity of database can be preserved by generating an image watermark from its contents. This image is registered with Certification Authority (CA) before the database is distributed for use. In case, the owner suspects any kind of tampering in the database, an image watermark is generated and compared with the registered image watermark. If both do not match, it can be concluded that the integrity of database has been compromised. Experiments are conducted on Forest Cover Type data set to localize tampering to the finest granularity. Results show that our approach can detect all types of attack with 100% accuracy.
Sravya, G., Kumar, Manchalla. O.V.P., Sudarsana Reddy, Y., Jamal, K., Mannem, Kiran.  2020.  The Ideal Block Ciphers - Correlation of AES and PRESENT in Cryptography. 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS). :1107—1113.
In this digital era, the usage of technology has increased rapidly and led to the deployment of more innovative technologies for storing and transferring the generated data. The most important aspect of the emerging communication technologies is to ensure the safety and security of the generated huge amount of data. Hence, cryptography is considered as a pathway that can securely transfer and save the data. Cryptography comprises of ciphers that act like an algorithm, where the data is encrypted at the source and decrypted at the destination. This paper comprises of two ciphers namely PRESENT and AES ciphers. In the real-time applications, AES is no more relevant especially for segmenting the organizations that leverage RFID, Sensors and IoT devices. In order to overcome the strategic issues faced by these organization, PRESENT ciphers work appropriately with its super lightweight block figure, which has the equivalent significance to both security and equipment arrangements. This paper compares the AES (Advance encryption standard) symmetric block cipher with PRESENT symmetric block cipher to leverage in the industries mentioned earlier, where the huge consumption of resources becomes a significant factor. For the comparison of different ciphers, the results of area, timing analysis and the waveforms are taken into consideration.
Jin, Kun, Liu, Chaoyue, Xia, Cathy.  2020.  OTDA: a Unsupervised Optimal Transport framework with Discriminant Analysis for Keystroke Inference. 2020 IEEE Conference on Communications and Network Security (CNS). :1—9.
Keystroke Inference has been a hot topic since it poses a severe threat to our privacy from typing. Existing learning-based Keystroke Inference suffers the domain adaptation problem because the training data (from attacker) and the test data (from victim) are generally collected in different environments. Recently, Optimal Transport (OT) is applied to address this problem, but suffers the “ground metric” limitation. In this work, we propose a novel method, OTDA, by incorporating Discriminant Analysis into OT through an iterative learning process to address the ground metric limitation. By embedding OTDA into a vibration-based Keystroke Inference platform, we conduct extensive studies about domain adaptation with different factors, such as people, keyboard position, etc.. Our experiment results show that OTDA can achieve significant performance improvement on classification accuracy, i.e., outperforming baseline by 15% to 30%, state-of-the-art OT and other domain adaptation methods by 10% to 20%.
Longueira-Romerc, Ángel, Iglesias, Rosa, Gonzalez, David, Garitano, Iñaki.  2020.  How to Quantify the Security Level of Embedded Systems? A Taxonomy of Security Metrics 2020 IEEE 18th International Conference on Industrial Informatics (INDIN). 1:153—158.
Embedded Systems (ES) development has been historically focused on functionality rather than security, and today it still applies in many sectors and applications. However, there is an increasing number of security threats over ES, and a successful attack could have economical, physical or even human consequences, since many of them are used to control critical applications. A standardized and general accepted security testing framework is needed to provide guidance, common reporting forms and the possibility to compare the results along the time. This can be achieved by introducing security metrics into the evaluation or assessment process. If carefully designed and chosen, metrics could provide a quantitative, repeatable and reproducible value that would reflect the level of security protection of the ES. This paper analyzes the features that a good security metric should exhibit, introduces a taxonomy for classifying them, and finally, it carries out a literature survey on security metrics for the security evaluation of ES. In this review, more than 500 metrics were collected and analyzed. Then, they were reduced to 169 metrics that have the potential to be applied to ES security evaluation. As expected, the 77.5% of them is related exclusively to software, and only the 0.6% of them addresses exclusively hardware security. This work aims to lay the foundations for constructing a security evaluation methodology that uses metrics so as to quantify the security level of an ES.
Terai, Takeru, Yoshida, Masami, Ramonet, Alberto Gallegos, Noguchi, Taku.  2020.  Blackhole Attack Cooperative Prevention Method in MANETs. 2020 Eighth International Symposium on Computing and Networking Workshops (CANDARW). :60–66.
Blackhole (BH) attacks are one of the most serious threats in mobile ad-hoc networks. A BH is a security attack in which a malicious node absorbs data packets and sends fake routing information to neighboring nodes. BH attacks are widely studied. However, existing defense methods wrongfully assume that BH attacks cannot overcome the most common defense approaches. A new wave of BH attacks is known as smart BH attacks. In this study, we used a highly aggressive type of BH attack that can predict sequence numbers to overcome traditional detection methods that set a threshold to sequence numbers. To protect the network from this type of BH attack, we propose a detection-and-prevention method that uses local information shared with neighboring nodes. Our experiments show that the proposed method successfully detects and contains even smart BH threats. Consequently, the attack success rate decreases.
Thapar, Shruti, Sharma, Sudhir Kumar.  2020.  Direct Trust-based Detection Algorithm for Preventing Jellyfish Attack in MANET. 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA). :749–753.
The dynamic and adaptable characteristics of mobile ad hoc networks have made it a significant field for deploying various applications in wireless sensor networks. Increasing popularity of the portable devices is the main reason for the development of mobile ad hoc networks. Furthermore, the network does not require a fixed architecture and it is easy to deploy. This type of network is highly vulnerable to cyber-attacks as the nodes communicate with each other through a Wireless medium. The most critical attack in ad hoc network is jellyfish attack. In this research we have proposed a Direct Trust-based Detection Algorithm to detect and prevent jellyfish attack in MANET.
Kong, Tong, Wang, Liming, Ma, Duohe, Chen, Kai, Xu, Zhen, Lu, Yijun.  2020.  ConfigRand: A Moving Target Defense Framework against the Shared Kernel Information Leakages for Container-based Cloud. 2020 IEEE 22nd International Conference on High Performance Computing and Communications; IEEE 18th International Conference on Smart City; IEEE 6th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :794—801.
Lightweight virtualization represented by container technology provides a virtual environment for cloud services with more flexibility and efficiency due to the kernel-sharing property. However, the shared kernel also means that the system isolation mechanisms are incomplete. Attackers can scan the shared system configuration files to explore vulnerabilities for launching attacks. Previous works mainly eliminate the problem by fixing operating systems or using access control policies, but these methods require significant modifications and cannot meet the security needs of individual containers accurately. In this paper, we present ConfigRand, a moving target defense framework to prevent the information leakages due to the shared kernel in the container-based cloud. The ConfigRand deploys deceptive system configurations for each container, bounding the scan of attackers aimed at the shared kernel. In design of ConfigRand, we (1) propose a framework applying the moving target defense philosophy to periodically generate, distribute, and deploy the deceptive system configurations in the container-based cloud; (2) establish a model to formalize these configurations and quantify their heterogeneity; (3) present a configuration movement strategy to evaluate and optimize the variation of configurations. The results show that ConfigRand can effectively prevent the information leakages due to the shared kernel and apply to typical container applications with minimal system modification and performance degradation.
Fan, Wenshu, Li, Hongwei, Jiang, Wenbo, Xu, Guowen, Lu, Rongxing.  2020.  A Practical Black-Box Attack Against Autonomous Speech Recognition Model. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–6.
With the wild applications of machine learning (ML) technology, automatic speech recognition (ASR) has made great progress in recent years. Despite its great potential, there are various evasion attacks of ML-based ASR, which could affect the security of applications built upon ASR. Up to now, most studies focus on white-box attacks in ASR, and there is almost no attention paid to black-box attacks where attackers can only query the target model to get output labels rather than probability vectors in audio domain. In this paper, we propose an evasion attack against ASR in the above-mentioned situation, which is more feasible in realistic scenarios. Specifically, we first train a substitute model by using data augmentation, which ensures that we have enough samples to train with a small number of times to query the target model. Then, based on the substitute model, we apply Differential Evolution (DE) algorithm to craft adversarial examples and implement black-box attack against ASR models from the Speech Commands dataset. Extensive experiments are conducted, and the results illustrate that our approach achieves untargeted attacks with over 70% success rate while still maintaining the authenticity of the original data well.
Ye, Yunxiu, Cao, Zhenfu, Shen, Jiachen.  2020.  Unbounded Key-Policy Attribute-Based Encryption with Black-Box Traceability. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1655—1663.
Attribute-based encryption received widespread attention as soon as it was proposed. However, due to its specific characteristics, some restrictions on attribute set are not flexible enough in actual operation. In addition, since access authorities are determined according to users' attributes, users sharing the same attributes are difficult to be distinguished. Once a malicious user makes illicit gains by their decryption authorities, it is difficult to track down specific user. This paper follows practical demands to propose a more flexible key-policy attribute-based encryption scheme with black-box traceability. The scheme has a constant size of public parameters which can be utilized to construct attribute-related parameters flexibly, and the method of traitor tracing in broadcast encryption is introduced to achieve effective malicious user tracing. In addition, the security and feasibility can be proved by the security proofs and performance evaluation in this paper.
Yin, Changchun, Wang, Hao, Zhou, Lu, Fang, Liming.  2020.  Ciphertext-Policy Attribute-Based Encryption with Multi-keyword Search over Medical Cloud Data. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :277—284.
Over the years, public health has faced a large number of challenges like COVID-19. Medical cloud computing is a promising method since it can make healthcare costs lower. The computation of health data is outsourced to the cloud server. If the encrypted medical data is not decrypted, it is difficult to search for those data. Many researchers have worked on searchable encryption schemes that allow executing searches on encrypted data. However, many existing works support single-keyword search. In this article, we propose a patient-centered fine-grained attribute-based encryption scheme with multi-keyword search (CP-ABEMKS) for medical cloud computing. First, we leverage the ciphertext-policy attribute-based technique to construct trapdoors. Then, we give a security analysis. Besides, we provide a performance evaluation, and the experiments demonstrate the efficiency and practicality of the proposed CP-ABEMKS.
Sharma, Prince, Shukla, Shailendra, Vasudeva, Amol.  2020.  Trust-based Incentive for Mobile Offloaders in Opportunistic Networks. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :872—877.
Mobile data offloading using opportunistic network has recently gained its significance to increase mobile data needs. Such offloaders need to be properly incentivized to encourage more and more users to act as helpers in such networks. The extent of help offered by mobile data offloading alternatives using appropriate incentive mechanisms is significant in such scenarios. The limitation of existing incentive mechanisms is that they are partial in implementation while most of them use third party intervention based derivation. However, none of the papers considers trust as an essential factor for incentive distribution. Although few works contribute to the trust analysis, but the implementation is limited to offloading determination only while the incentive is independent of trust. We try to investigate if trust could be related to the Nash equilibrium based incentive evaluation. Our analysis results show that trust-based incentive distribution encourages more than 50% offloaders to act positively and contribute successfully towards efficient mobile data offloading. We compare the performance of our algorithm with literature based salary-bonus scheme implementation and get optimum incentive beyond 20% dependence over trust-based output.
Wang, Guodong, Tian, Dongbo, Gu, Fengqiang, Li, Jia, Lu, Yang.  2020.  Design of Terminal Security Access Scheme based on Trusted Computing in Ubiquitous Electric Internet of Things. 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 9:188–192.
In the Ubiquitous Electric Internet of Things (UEIoT), the terminals are very easy to be accessed and attacked by attackers due to the lack of effective monitoring and safe isolation methods. Therefore, in the implementation of UEIoT, the security protection of terminals is particularly important. Therefore, this paper proposes a dual-system design scheme for terminal active immunity based on trusted computing. In this scheme, the terminal node in UEIoT is composed of two parts: computing part and trusted protection part. The computing component and the trusted protection component are logically independent of each other, forming a trusted computing active immune dual-system structure with both computing and protection functions. The Trusted Network Connection extends the trusted state of the terminal to the network, thus providing a solution for terminal secure access in the UEIoT.
Yao, Xiaoyong, Pei, Yuwen, Wu, Pingdong, Huang, Man-ling.  2020.  Study on Integrative Control between the Stereoscopic Image and the Tactile Feedback in Augmented Reality. 2020 IEEE 3rd International Conference on Electronics and Communication Engineering (ICECE). :177—180.
The precise integrative control between the stereoscopic image and the tactile feedback is very essential in augmented reality[1]-[4]. In order to study this question, this paper will introduce a stereoscopic-imaging and tactile integrative augmented-reality system, and a stereoscopic-imaging and tactile integrative algorithm. The system includes a stereoscopic-imaging part and a string-based tactile part. The integrative algorithm is used to precisely control the interaction between the two parts. The results for testing the system and the algorithm demonstrate the system to be perfect through 5 testers' operation and will be presented in the last part of the paper.
Maalla, Allam.  2020.  Research on Data Transmission Security Architecture Design and Process. 2020 IEEE International Conference on Information Technology,Big Data and Artificial Intelligence (ICIBA). 1:1195—1199.
With the development of business, management companies are currently facing a series of problems and challenges in terms of resource allocation and task management. In terms of the technical route, this research will use cloud services to implement the public honesty system, and carry out secondary development and interface development on this basis, the architecture design and the formulation of the process are realized for various types, relying on the support of the knowledge base and case library, through the system intelligent configuration corresponding work instructions, safety work instructions, case references and other reference information to the existing work plan to provide managers Reference; managers can configure and adjust the work content by themselves through specific requirements to efficiently and flexibly adapt to the work content.