Visible to the public Biblio

Filters: Keyword is chaotic communication  [Clear All Filters]
Patel, Sakshi, V, Thanikaiselvan.  2022.  New Image Encryption Algorithm based on Pixel Confusion-Diffusion using Hash Functions and Chaotic Map. 2022 7th International Conference on Communication and Electronics Systems (ICCES). :862—867.
Information privacy and security has become a necessity in the rapid growth of computer technology. A new algorithm for image encryption is proposed in this paper; using hash functions, chaotic map and two levels of diffusion process. The initialization key for chaos map is generated with the help of two hash functions. The initial seed for these hash functions is the sum of rows, columns and pixels across the diagonal of the plain image. Firstly, the image is scrambled using quantization unit. In the first level of diffusion process, the pixel values of the scrambled image are XOR with the normalized chaotic map. Odd pixel value is XOR with an even bit of chaotic map and even pixel is XOR with an odd bit of chaotic map. To achieve strong encryption, the image undergoes a second level of diffusion process where it is XOR with the map a finite number of times. After every round, the pixel array is circular shifted three times to achieve a strong encrypted image. The experimental and comparative analysis done with state of the art techniques on the proposed image encryption algorithm shows that it is strong enough to resist statistical and differential attacks present in the communication channel.
Senthilnayaki, B., Venkatalakshami, K., Dharanyadevi, P., G, Nivetha, Devi, A..  2022.  An Efficient Medical Image Encryption Using Magic Square and PSO. 2022 International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN). :1–5.
Encryption is essential for protecting sensitive data, especially images, against unauthorized access and exploitation. The goal of this work is to develop a more secure image encryption technique for image-based communication. The approach uses particle swarm optimization, chaotic map and magic square to offer an ideal encryption effect. This work introduces a novel encryption algorithm based on magic square. The image is first broken down into single-byte blocks, which are then replaced with the value of the magic square. The encrypted images are then utilized as particles and a starting assembly for the PSO optimization process. The correlation coefficient applied to neighboring pixels is used to define the ideal encrypted image as a fitness function. The results of the experiments reveal that the proposed approach can effectively encrypt images with various secret keys and has a decent encryption effect. As a result of the proposed work improves the public key method's security while simultaneously increasing memory economy.
Ravi, Renjith V., Goyal, S. B., Islam, Sardar M N.  2022.  Colour Image Encryption Using Chaotic Trigonometric Map and DNA Coding. 2022 International Conference on Computational Modelling, Simulation and Optimization (ICCMSO). :172—176.
The problem of information privacy has grown more significant in terms of data storage and communication in the 21st century due to the technological explosion during which information has become a highly important strategic resource. The idea of employing DNA cryptography has been highlighted as a potential technology that offers fresh hope for unbreakable algorithms since standard cryptosystems are becoming susceptible to assaults. Due to biological DNA's outstanding energy efficiency, enormous storage capacity, and extensive parallelism, a new branch of cryptography based on DNA computing is developing. There is still more study to be done since this discipline is still in its infancy. This work proposes a DNA encryption strategy based on cryptographic key generation techniques and chaotic diffusion operation.
Tiwari, Anurag, Srivastava, Vinay Kumar.  2022.  A Chaotic Encrypted Reliable Image Watermarking Scheme based on Integer Wavelet Transform-Schur Transform and Singular Value Decomposition. 2022 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :581–586.
In the present era of the internet, image watermarking schemes are used to provide content authentication, security and reliability of various multimedia contents. In this paper image watermarking scheme which utilizes the properties of Integer Wavelet Transform (IWT), Schur decomposition and Singular value decomposition (SVD) based is proposed. In the suggested method, the cover image is subjected to a 3-level Integer wavelet transform (IWT), and the HH3 subband is subjected to Schur decomposition. In order to retrieve its singular values, the upper triangular matrix from the HH3 subband’s Schur decomposition is then subjected to SVD. The watermark image is first encrypted using a chaotic map, followed by the application of a 3-level IWT to the encrypted watermark and the usage of singular values of the LL-subband to embed by manipulating the singular values of the processed cover image. The proposed scheme is tested under various attacks like filtering (median, average, Gaussian) checkmark (histogram equalization, rotation, horizontal and vertical flipping) and noise (Gaussian, Salt & Pepper Noise). The suggested scheme provides strong robustness against numerous attacks and chaotic encryption provides security to watermark.
Sun, Yanling, Chen, Ning, Jiang, Tianjiao.  2022.  Research on Image Encryption based on Generalized M-J Set. 2022 IEEE 2nd International Conference on Electronic Technology, Communication and Information (ICETCI). :1165–1168.
With the rapid development of information technology, hacker invasion, Internet fraud and privacy disclosure and other events frequently occur, therefore information security issues become the focus of attention. Protecting the secure transmission of information has become a hot topic in today's research. As the carrier of information, image has the characteristics of vivid image and large amount of information. It has become an indispensable part of people's communication. In this paper, we proposed the key simulation analysis research based on M-J set. The research uses a complex iterative mapping to construct M set. On the basis of the constructed M set, the constructed Julia set is used to form the encryption key. The experimental results show that the generalized M-set has the characteristics of chaotic characteristic and initial value sensitivity, and the complex mapping greatly exaggerates the key space. The research on the key space based on the generalized M-J set is helpful to improve the effect of image encryption.
Senlin, Yan.  2022.  The Technology and System of Chaotic Laser AVSK Coding and Combined Coding for Optics Secure Communications. 2022 IEEE 10th International Conference on Information, Communication and Networks (ICICN). :212–216.
We present a novel chaotic laser coding technology of alternate variable secret-key (AVSK) for optics secure communication using alternate variable orbits (AVOs) method. We define the principle of chaotic AVSK encoding and decoding, and introduce a chaotic AVSK communication platform and its coding scheme. And then the chaotic AVSK coding technology be successfully achieved in encrypted optics communications while the presented AVO function, as AVSK, is adjusting real-time chaotic phase space trajectory, where the AVO function and AVSK according to our needs can be immediately variable and adjustable. The coding system characterizes AVSK of emitters. And another combined AVSK coding be discussed. So the system's security enhances obviously because it increases greatly the difficulty for intruders to decipher the information from the carrier. AVSK scheme has certain reference value for the research of chaotic laser secure communication and laser network synchronization.
Shaocheng, Wu, Hefang, Jiang, Sijian, Li, Tao, Liu.  2022.  Design of a chaotic sequence cipher algorithm. 2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA). :320–323.
To protect the security of video information use encryption technology to be effective means. In practical applications, the structural complexity and real-time characteristics of video information make the encryption effect of some commonly used algorithms have some shortcomings. According to the characteristics of video, to design practical encryption algorithm is necessary. This paper proposed a novel scheme of chaotic image encryption, which is based on scrambling and diffusion structure. Firstly, the breadth first search method is used to scramble the pixel position in the original image, and then the pseudo-random sequence generated by the time-varying bilateral chaotic symbol system is used to transform each pixel of the scrambled image ratio by ratio or encryption. In the simulation experiment and analysis, the performance of the encrypted image message entropy displays that the new chaotic image encryption scheme is effective.
Sahlabadi, Mahdi, Saberikamarposhti, Morteza, Muniyandi, Ravie Chandren, Shukur, Zarina.  2022.  Using Cycling 3D Chaotic Map and DNA Sequences for Introducing a Novel Algorithm for Color Image Encryption. 2022 International Conference on Cyber Resilience (ICCR). :1–7.
Today, social communication through the Internet has become more popular and has become a crucial part of our daily life. Naturally, sending and receiving various data through the Internet has also grown a lot. Keeping important data secure in transit has become a challenge for individuals and even organizations. Therefore, the trinity of confidentiality, integrity, and availability will be essential, and encryption will definitely be one of the best solutions to this problem. Of course, for image data, it will not be possible to use conventional encryption methods for various reasons, such as the redundancy of image data, the strong correlation of adj acent pixels, and the large volume of image data. Therefore, special methods were developed for image encryption. Among the prevalent methods for image encryption is the use of DNA sequences as well as chaos signals. In this paper, a cycling 3D chaotic map and DNA sequences are used to present a new method for color image encryption. Several experimental analyses were performed on the proposed method, and the results proved that the presented method is secure and efficient.
Debnath, Sristi, Kar, Nirmalya.  2022.  An Approach Towards Data Security Based on DCT and Chaotic Map. 2022 2nd Asian Conference on Innovation in Technology (ASIANCON). :1–5.
Currently, the rapid development of digital communication and multimedia has made security an increasingly prominent issue of communicating, storing, and transmitting digital data such as images, audio, and video. Encryption techniques such as chaotic map based encryption can ensure high levels of security of data and have been used in many fields including medical science, military, and geographic satellite imagery. As a result, ensuring image data confidentiality, integrity, security, privacy, and authenticity while transferring and storing images over an unsecured network like the internet has become a high concern. There have been many encryption technologies proposed in recent years. This paper begins with a summary of cryptography and image encryption basics, followed by a discussion of different kinds of chaotic image encryption techniques and a literature review for each form of encryption. Finally, by examining the behaviour of numerous existing chaotic based image encryption algorithms, this paper hopes to build new chaotic based image encryption strategies in the future.
Deepa, N R, Sivamangai, N M.  2022.  A State-Of-Art Model of Encrypting Medical Image Using DNA Cryptography and Hybrid Chaos Map - 2d Zaslavaski Map: Review. 2022 6th International Conference on Devices, Circuits and Systems (ICDCS). :190–195.

E-health, smart health and telemedicine are examples of sophisticated healthcare systems. For end-to-end communication, these systems rely on digital medical information. Although this digitizing saves much time, it is open source. As a result, hackers could potentially manipulate the digital medical image as it is being transmitted. It is harder to diagnose an actual disease from a modified digital medical image in medical diagnostics. As a result, ensuring the security and confidentiality of clinical images, as well as reducing the computing time of encryption algorithms, appear to be critical problems for research groups. Conventional approaches are insufficient to ensure high-level medical image security. So this review paper focuses on depicting advanced methods like DNA cryptography and Chaotic Map as advanced techniques that could potentially help in encrypting the digital image at an effective level. This review acknowledges the key accomplishments expressed in the encrypting measures and their success indicators of qualitative and quantitative measurement. This research study also explores the key findings and reasons for finding the lessons learned as a roadmap for impending findings.

ISSN: 2644-1802

Monani, Ravi, Rogers, Brian, Rezaei, Amin, Hedayatipour, Ava.  2022.  Implementation of Chaotic Encryption Architecture on FPGA for On-Chip Secure Communication. 2022 IEEE Green Energy and Smart System Systems (IGESSC). :1–6.
Chaos is an interesting phenomenon for nonlinear systems that emerges due to its complex and unpredictable behavior. With the escalated use of low-powered edge-compute devices, data security at the edge develops the need for security in communication. The characteristic that Chaos synchronizes over time for two different chaotic systems with their own unique initial conditions, is the base for chaos implementation in communication. This paper proposes an encryption architecture suitable for communication of on-chip sensors to provide a POC (proof of concept) with security encrypted on the same chip using different chaotic equations. In communication, encryption is achieved with the help of microcontrollers or software implementations that use more power and have complex hardware implementation. The small IoT devices are expected to be operated on low power and constrained with size. At the same time, these devices are highly vulnerable to security threats, which elevates the need to have low power/size hardware-based security. Since the discovery of chaotic equations, they have been used in various encryption applications. The goal of this research is to take the chaotic implementation to the CMOS level with the sensors on the same chip. The hardware co-simulation is demonstrated on an FPGA board for Chua encryption/decryption architecture. The hardware utilization for Lorenz, SprottD, and Chua on FPGA is achieved with Xilinx System Generation (XSG) toolbox which reveals that Lorenz’s utilization is 9% lesser than Chua’s.
ISSN: 2640-0138
Alexan, Wassim, Mamdouh, Eyad, Elkhateeb, Abdelrahman, Al-Seba'ey, Fahd, Amr, Ziad, Khalil, Hana.  2021.  Securing Sensitive Data Through Corner Filters, Chaotic Maps and LSB Embedding. 2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES). :359—364.
This paper proposes 2 multiple layer message security schemes. Information security is carried out through the implementation of cryptography, steganography and image processing techniques. In both schemes, the sensitive data is first encrypted by employing a chaotic function. In the first proposed scheme, LSB steganography is then applied to 2D slices of a 3D image. In the second proposed scheme, a corner detection filter is first applied to the 2D slices of a 3D image, then LSB embedding is carried out in those corner-detected pixels. The number of neighboring pixels used for corner detection is varied and its effect is noted. Performance of the proposed schemes is numerically evaluated using a number of metrics, including the mean squared error (MSE), the peak signal to noise ratio (PSNR), the structure similarity index measure (SSIM), the normalized cross-correlation (NCC), the image fidelity (IF), as well as the image difference (ID). The proposed schemes exhibit superior payload capacity and security in comparison to their counterparts from the literature.
Liu, Xiyao, Fang, Yaokun, He, Feiyi, Li, Zhaoying, Zhang, Yayun, Zeng, Xiongfei.  2021.  High capacity coverless image steganography method based on geometrically robust and chaotic encrypted image moment feature. 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :1455—1460.
In recent years, coverless image steganography attracts significant attentions due to its distortion-free trait on carrier images to avoid the detection by steganalysis tools. Despite this advantage, current coverless methods face several challenges, e.g., vulnerability to geometrical attacks and low hidden capacity. In this paper, we propose a novel coverless steganography algorithm based on chaotic encrypted dual radial harmonic Fourier moments (DRHFM) to tackle the challenges. In specific, we build mappings between the extracted DRHFM features and secret messages. These features are robust to various of attacks, especially to geometrical attacks. We further deploy the DRHFM parameters to adjust the feature length, thus ensuring the high hidden capacity. Moreover, we introduce a chaos encryption algorithm to enhance the security of the mapping features. The experimental results demonstrate that our proposed scheme outperforms the state-of-the-art coverless steganography based on image mapping in terms of robustness and hidden capacity.
Anh, Dao Vu, Tran Thi Thanh, Thuy, Huu, Long Nguyen, Dung Truong, Cao, Xuan, Quyen Nguyen.  2021.  Performance Analysis of High-Speed Wavelength Division Multiplexing Communication Between Chaotic Secure and Optical Fiber Channels Using DP-16QAM Scheme. 2020 IEEE Eighth International Conference on Communications and Electronics (ICCE). :33—38.
In this paper, we propose a numerical simulation investigation of the wavelength division multiplexing mechanism between a chaotic secure channel and a traditional fiber channel using the advanced modulation method DP-16QAM at the bitrate of 80Gbps, the fiber length of 80 km and 100 GHz channel spacing in C-band. Our paper investigates correlation coefficients between the transmitter and also the receiver for two forms of communication channels. Our simulation results demonstrate that, in all cases, BER is always below 2.10-4 even when we have not used the forward-error-correction method. Besides, cross-interaction between the chaotic channel and also the non-chaotic channel is negligible showing a highly independent level between two channels.
Asaithambi, Gobika, Gopalakrishnan, Balamurugan.  2021.  Design of Code and Chaotic Frequency Modulation for Secure and High Data rate Communication. 2021 5th International Conference on Computer, Communication and Signal Processing (ICCCSP). :1—6.
In Forward Error Correction (FEC), redundant bits are added for detecting and correcting bit error which increases the bandwidth. To solve this issue we combined FEC method with higher order M-ary modulation to provide a bandwidth efficient system. An input bit stream is mapped to a bi-orthogonal code on different levels based on the code rates (4/16, 3/16, and 2/16) used. The jamming attack on wireless networks are mitigated by Chaotic Frequency Hopping (CFH) spread spectrum technique. In this paper, to achieve better data rate and to transmit the data in a secured manner we combined FEC and CFH technique, represented as Code and Chaotic Frequency Modulation (CCFM). In addition, two rate adaptation algorithms namely Static retransmission rate ARF (SARF) and Fast rate reduction ARF (FARF) are employed in CFH technique to dynamically adapt the code rate based on channel condition to reduce a packet retransmission. Symbol Error Rate (SER) performance of the system is analyzed for different code rate with the conventional OFDM in the presence AWGN and Rayleigh channel and the reliability of CFH method is tested under different jammer.
Pradeep, Diya Achu, Harsha, A, Jacob, Jaison.  2021.  Image Encryption Using Chaotic Map And Related Analysis. 2021 International Conference on Advances in Computing and Communications (ICACC). :1—5.
The superior breadth of data transmission through the internet is rapidly increasing in the current scenario. The information in the form of images is really critical in the fields of Banking, Military, Medicine, etc, especially, in the medical field as people are unable to travel to different locations, they rely on telemedicine facilities available. All these fields are equally vulnerable to intruders. So, to prevent such an act, encryption of these data in the form of images can be done using chaos encryption. Chaos Encryption has its long way in the field of Secure Communication. Their Unique features offer much more security than any conventional algorithms. There are many simple chaotic maps that could be used for encryption. In this paper, at first Henon chaotic maps is used for the encryption purpose. The comparison of the algorithm with conventional algorithms is also done. Finally, a security analysis for proving the robustness of the algorithm is carried out. Also, different existing and some new versions are compared so as to check whether a new combination could produce a better result. The simulation results show that the proposed algorithm is robust and simple to be used for this application. Also, found a new combination of the map to be used for the application.
Ahuja, Bharti, Doriya, Rajesh.  2021.  An Unsupervised Learning Approach for Visual Data Compression with Chaotic Encryption. 2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT). :1—4.
The increased demand of multimedia leads to shortage of network bandwidth and memory capacity. As a result, image compression is more significant for decreasing data redundancy, saving storage space and bandwidth. Along with the compression the next major challenge in this field is to safeguard the compressed data further from the spy which are commonly known as hackers. It is evident that the major increments in the fields like communication, wireless sensor network, data science, cloud computing and machine learning not only eases the operations of the related field but also increases the challenges as well. This paper proposes a worthy composition for image compression encryption based on unsupervised learning i.e. k-means clustering for compression with logistic chaotic map for encryption. The main advantage of the above combination is to address the problem of data storage and the security of the visual data as well. The algorithm reduces the size of the input image and also gives the larger key space for encryption. The validity of the algorithm is testified with the PSNR, MSE, SSIM and Correlation coefficient.
Elzaher, Mahmoud F. Abd, Shalaby, Mohamed.  2021.  Two-level chaotic system versus non-autonomous modulation in the context of chaotic voice encryption. 2021 International Telecommunications Conference (ITC-Egypt). :1—6.
In this paper, two methods are introduced for securing voice communication. The first technique applies multilevel chaos-based block cipher and the second technique applies non-autonomous chaotic modulation. In the first approach, the encryption method is implemented by joining Arnold cat map with the Lorenz system. This method depends on permuting and substituting voice samples. Applying two levels of a chaotic system, enhances the security of the encrypted signal. the permutation process of the voice samples is implemented by applying Arnold cat map, then use Lorenz chaotic flow to create masking key and consequently substitute the permuted samples. In the second method, an encryption method based on non-autonomous modulation is implemented, in the master system, and the voice injection process is applied into one variable of the Lorenz chaotic flow without modifying the state of controls parameter. Non-autonomous modulation is proved to be more suitable than other techniques for securing real-time applications; it also masters the problems of chaotic parameter modulation and chaotic masking. A comparative study of these methods is presented.
Ergün, Salih, Maden, Fatih.  2021.  An ADC Based Random Number Generator from a Discrete Time Chaotic Map. 2021 26th IEEE Asia-Pacific Conference on Communications (APCC). :79—82.
This paper introduces a robust random number generator that based on Bernoulli discrete chaotic map. An eight bit SAR ADC is used with discrete time chaotic map to generate random bit sequences. Compared to RNGs that use the continuous time chaotic map, sensitivity to process, voltage and temperature (PVT) variations are reduced. Thanks to utilizing switch capacitor circuits to implement Bernoulli chaotic map equations, power consumption decreased significantly. Proposed design that has a throughput of 500 Kbit/second is implemented in TSMC 180 nm process technology. Generated bit sequences has successfully passed all four primary tests of FIPS-140-2 test suite and all tests of NIST 820–22 test suite without post processing. Furthermore, data rate can be increased by sacrificing power consumption. Hence, proposed architecture could be utilized in high speed cryptography applications.
Fang, Xi, Zhou, Yang, Xiao, Ling, Zhao, Cheng, Yu, Zifang.  2021.  Security Enhancement for CO-OFDM/OQAM System using Twice Chaotic Encryption Scheme. 2021 Asia Communications and Photonics Conference (ACP). :1—3.
In this paper, we propose a twice chaotic encryption scheme to improve the security of CO-OFDM/OQAM system. Simulation results show that the proposed scheme enhance the physical-layer security within the acceptable performance penalty.
Xiao, Ling, Fang, Xi, Jin, Jifang, Yu, Zifang, Zhou, Yang.  2021.  Chaotic Constellation Masking Encryption Method for Security-enhanced CO-OFDM/OQAM System. 2021 Asia Communications and Photonics Conference (ACP). :1—3.
In this paper, we propose a Chaotic Constellation Masking (CCM) encryption method based on henon mapping to enhance the security of CO-OFDM/OQAM system. Simulation results indicate the capability of the CCM method improving system security.
Senlin, Yan.  2021.  Study on An Alternate-Channel Chaotic Laser Secure Communication System and Shifting Secret Keys to Enhance Security. 2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). :1—6.
We present an alternate-channel chaotic laser secure communication system to enhance information communication security and study its technical solution via combining chaos shift keying (CSK) and chaos masking (CM). Two coupled lasers and other two single lasers are introduced as a novel alternate-channel secure communication system, where one of two coupled lasers is modulated via CSK to encode a digital signal and the other of coupled lasers is used to emit a chaotic carrier to mask an information using CM. The two single lasers are used to decode CSK and CM information, respectively. And such CSK performance results in enhancement of CM secure performance because of in-time variation of the emitter' parameter as secret keys. The obtained numerical results show that the encoding and decoding can be successfully performed. The study is beneficial to chaotic cryptography and optics secure communication.
Fang, Yuan, Li, Lixiang, Li, Yixiao, Peng, Haipeng.  2021.  High Efficient and Secure Chaos-Based Compressed Spectrum Sensing in Cognitive Radio IoT Network. 2021 IEEE Sixth International Conference on Data Science in Cyberspace (DSC). :670–676.
In recent years, with the rapid update of wireless communication technologies such as 5G and the Internet of Things, as well as the explosive growth of wireless intelligent devices, people's demand for radio spectrum resources is increasing, which leads spectrum scarcity is becoming more serious. To address the scarcity of spectrum, the Internet of Things based on cognitive radio (CR-IoT) has become an effective technique to enable IoT devices to reuse the spectrum that has been fully utilized. The frequency band information is transmitted through wireless communication in the CR-IoT network, so the node is easily to be eavesdropped or tampered with by attackers in the process of transmitting data, which leads to information leakage and wrong perception results. To deal with the security problem of channel data transmission, this paper proposes a chaotic compressed spectrum sensing algorithm. In this algorithm, the chaotic parameter package is utilized to generate the measurement matrix, which makes good use of the sensitivity of the initial value of chaotic system to improve the transmission security. And the introduction of the semi-tensor theory significantly reduces the dimension of the matrix that the secondary user needs to store. In addition, the semi-tensor compressed sensing is used in the fusion center for parallel reconstruction process, which effectively reduces the sensing time delay. The simulation results show that the chaotic compressed spectrum sensing algorithm can achieve faster, high-quality, and low-energy channel energy transmission.
Gularte, Kevin H. M., Gómez, Juan C. G., Vargas, José A. R., Dos Santos, Rogério R..  2021.  Chaos-based Cryptography Using an Underactuated Synchronizer. 2021 14th IEEE International Conference on Industry Applications (INDUSCON). :1303–1308.
This paper proposes a scheme for secure telecommunication based on synchronizing a chaotic Liu system with a nontrivial Lyapunov candidate, which allows for the control signal to act only on one state of the slave system. The proposal has the advantages of being robust against disturbances (internal and external) and simple, which is essential because it leads to significant cost reductions when implemented using analog electronics. A simulation study, which considers the presence of disturbances, is used to validate the theoretical results and show the easy implementation of the proposed approach.
Salunke, Sharad, Venkatadri, M., Hashmi, Md. Farukh, Ahuja, Bharti.  2021.  An Implicit Approach for Visual Data: Compression Encryption via Singular Value Decomposition, Multiple Chaos and Beta Function. 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1—5.
This paper proposes a digital image compression-encryption scheme based on the theory of singular value decomposition, multiple chaos and Beta function, which uses SVD to compress the digital image and utilizes three way protections for encryption viz. logistic and Arnold map along with the beta function. The algorithm has three advantages: First, the compression scheme gives the freedom to a user so that one can select the desired compression level according to the application with the help of singular value. Second, it includes a confusion mechanism wherein the pixel positions of image are scrambled employing Cat Map. The pixel location is shuffled, resulting in a cipher text image that is safe for communication. Third the key is generated with the help of logistic map which is nonlinear and chaotic in nature therefore highly secured. Fourth the beta function used for encryption is symmetric in nature which means the order of its parameters does not change the outcome of the operation, meaning faithful reconstruction of an image. Thus, the algorithm is highly secured and also saving the storage space as well. The experimental results show that the algorithm has the advantages of faithful reconstruction with reasonable PSNR on different singular values.