Visible to the public Biblio

Filters: Keyword is decision-making process  [Clear All Filters]
Amrouche, F., Lagraa, S., Frank, R., State, R..  2020.  Intrusion detection on robot cameras using spatio-temporal autoencoders: A self-driving car application. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). :1—5.

Robot Operating System (ROS) is becoming more and more important and is used widely by developers and researchers in various domains. One of the most important fields where it is being used is the self-driving cars industry. However, this framework is far from being totally secure, and the existing security breaches do not have robust solutions. In this paper we focus on the camera vulnerabilities, as it is often the most important source for the environment discovery and the decision-making process. We propose an unsupervised anomaly detection tool for detecting suspicious frames incoming from camera flows. Our solution is based on spatio-temporal autoencoders used to truthfully reconstruct the camera frames and detect abnormal ones by measuring the difference with the input. We test our approach on a real-word dataset, i.e. flows coming from embedded cameras of self-driving cars. Our solution outperforms the existing works on different scenarios.

Talebi, Shahriar, Simaan, Marwan A., Qu, Zhihua.  2019.  Decision-Making in Complex Dynamical Systems of Systems With One Opposing Subsystem. 2019 18th European Control Conference (ECC). :2789—2795.
Many complex dynamical systems consist of a large number of interacting subsystems that operate harmoniously and make decisions that are designed for the benefit of the entire enterprise. If, in an attempt to disrupt the operation of the entire system, one subsystem gets attacked and is made to operate in a manner that is adversarial with the others, then the entire system suffers, resulting in an adversarial decision-making environment among its subsystems. Such an environment may affect not only the decision-making process of the attacked subsystem but also possibly the other remaining subsystems as well. The disruption caused by the attacked subsystem may cause the remaining subsystems to either coalesce as a unified team making team-based decisions, or disintegrate and act as independent decision-making entities. The decision-making process in these types of complex systems of systems is best analyzed within the general framework of cooperative and non-cooperative game theory. In this paper, we will develop an analysis that provides a theoretical basis for modeling the decision-making process in such complex systems. We show how cooperation among the subsystems can produce Noninferior Nash Strategies (NNS) that are fair and acceptable to all subsystems within the team while at the same time provide the subsystems in the team with the security of the Nash equilibrium against the opposing attacked subsystem. We contrast these strategies with the all Nash Strategies (NS) that would result if the operation of the entire system disintegrated and became adversarial among all subsystems as a result of the attack. An example of a system consisting of three subsystems with one opposing subsystem as a result of an attack is included to illustrate the results.
Sun, M., Li, M., Gerdes, R..  2018.  Truth-Aware Optimal Decision-Making Framework with Driver Preferences for V2V Communications. 2018 IEEE Conference on Communications and Network Security (CNS). :1-9.

In Vehicle-to-Vehicle (V2V) communications, malicious actors may spread false information to undermine the safety and efficiency of the vehicular traffic stream. Thus, vehicles must determine how to respond to the contents of messages which maybe false even though they are authenticated in the sense that receivers can verify contents were not tampered with and originated from a verifiable transmitter. Existing solutions to find appropriate actions are inadequate since they separately address trust and decision, require the honest majority (more honest ones than malicious), and do not incorporate driver preferences in the decision-making process. In this work, we propose a novel trust-aware decision-making framework without requiring an honest majority. It securely determines the likelihood of reported road events despite the presence of false data, and consequently provides the optimal decision for the vehicles. The basic idea of our framework is to leverage the implied effect of the road event to verify the consistency between each vehicle's reported data and actual behavior, and determine the data trustworthiness and event belief by integrating the Bayes' rule and Dempster Shafer Theory. The resulting belief serves as inputs to a utility maximization framework focusing on both safety and efficiency. This framework considers the two basic necessities of the Intelligent Transportation System and also incorporates drivers' preferences to decide the optimal action. Simulation results show the robustness of our framework under the multiple-vehicle attack, and different balances between safety and efficiency can be achieved via selecting appropriate human preference factors based on the driver's risk-taking willingness.

Arya, D., Dave, M..  2017.  Security-based service broker policy for FOG computing environment. 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.

With the evolution of computing from using personal computers to use of online Internet of Things (IoT) services and applications, security risks have also evolved as a major concern. The use of Fog computing enhances reliability and availability of the online services due to enhanced heterogeneity and increased number of computing servers. However, security remains an open challenge. Various trust models have been proposed to measure the security strength of available service providers. We utilize the quantized security of Datacenters and propose a new security-based service broker policy(SbSBP) for Fog computing environment to allocate the optimal Datacenter(s) to serve users' requests based on users' requirements of cost, time and security. Further, considering the dynamic nature of Fog computing, the concept of dynamic reconfiguration has been added. Comparative analysis of simulation results shows the effectiveness of proposed policy to incorporate users' requirements in the decision-making process.

Erola, A., Agrafiotis, I., Happa, J., Goldsmith, M., Creese, S., Legg, P. A..  2017.  RicherPicture: Semi-automated cyber defence using context-aware data analytics. 2017 International Conference On Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). :1–8.

In a continually evolving cyber-threat landscape, the detection and prevention of cyber attacks has become a complex task. Technological developments have led organisations to digitise the majority of their operations. This practice, however, has its perils, since cybespace offers a new attack-surface. Institutions which are tasked to protect organisations from these threats utilise mainly network data and their incident response strategy remains oblivious to the needs of the organisation when it comes to protecting operational aspects. This paper presents a system able to combine threat intelligence data, attack-trend data and organisational data (along with other data sources available) in order to achieve automated network-defence actions. Our approach combines machine learning, visual analytics and information from business processes to guide through a decision-making process for a Security Operation Centre environment. We test our system on two synthetic scenarios and show that correlating network data with non-network data for automated network defences is possible and worth investigating further.