Visible to the public Biblio

Filters: Keyword is Fuzzy logic  [Clear All Filters]
2020-07-27
Rani, Sonam, Jain, Sushma.  2018.  Hybrid Approach to Detect Network Based Intrusion. 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA). :1–5.
In internet based communication, various types of attacks have been evolved. Hence, attacker easily breaches the securities. Traditional intrusion detection techniques to observe these attacks have failed and thus hefty systems are required to remove these attacks before they expose entire network. With the ability of artificial intelligence systems to adapt high computational speed, boost fault tolerance, and error resilience against noisy information, a hybrid particle swarm optimization(PSO) fuzzy rule based inference engine has been designed in this paper. The fuzzy logic based on degree of truth while the PSO algorithm based on population stochastic technique helps in learning from the scenario, thus their combination will increase the toughness of intrusion detection system. The proposed network intrusion detection system will be able to classify normal as well as anomalism behaviour in the network. DARPA-KDD99 dataset examined on this system to address the behaviour of each connection on network and compared with existing system. This approach improves the result on the basis of precision, recall and F1-score.
2020-07-06
Brezhniev, Yevhen.  2019.  Multilevel Fuzzy Logic-Based Approach for Critical Energy Infrastructure’s Cyber Resilience Assessment. 2019 10th International Conference on Dependable Systems, Services and Technologies (DESSERT). :213–217.
This paper presents approach for critical energy infrastructure's (CEI) cyber resilience assessment. The CEI is the vital physical system of systems, whose accidents and failures lead to damage of economy, environment, impact on health and lives of people. The analysis of cyber incidents with Ukrainian CEI confirms the importance of the task of increasing its cyber resilience to external hostile influences and keeping of the appropriate level of functionality, safety and reliability. This paper is devoted to development of approach for CEI's cyber resilience assessment considering the important capacities of its systems (adaptivity, restoration, absorbability, preventive) and interdependencies between them. This approach is based on application of multilevel fuzzy logic models (called as logic-linguistic models, LLM) taking into consideration the data available from expert's knowledge. The comparison between risk management and resilience assurance is performed. The new risk-oriented definition of resiliency is suggested.
2020-06-26
Polyakov, Dmitry, Eliseev, Aleksey, Moiseeva, Maria, Alekseev, Vladimir, Kolegov, Konstantin.  2019.  The Model and Algorithm for Ensuring the Survivability of Control Systems of Dynamic Objects in Conditions of Uncertainty. 2019 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency (SUMMA). :41—44.
In the article the problem of survivability evaluation of control systems is considered. Control system is presented as a graph with edges that formalize minimal control systems consist of receiver, transmitter and a communication line connecting them. Based on the assumption that the survivability of minimal control systems is known, the mathematical model of survivability evaluation of not minimal control systems based on fuzzy logic is offered.
2020-04-10
Chapla, Happy, Kotak, Riddhi, Joiser, Mittal.  2019.  A Machine Learning Approach for URL Based Web Phishing Using Fuzzy Logic as Classifier. 2019 International Conference on Communication and Electronics Systems (ICCES). :383—388.

Phishing is the major problem of the internet era. In this era of internet the security of our data in web is gaining an increasing importance. Phishing is one of the most harmful ways to unknowingly access the credential information like username, password or account number from the users. Users are not aware of this type of attack and later they will also become a part of the phishing attacks. It may be the losses of financial found, personal information, reputation of brand name or trust of brand. So the detection of phishing site is necessary. In this paper we design a framework of phishing detection using URL.

2020-03-16
Eneh, Joy Nnenna, Onyekachi Orah, Harris, Emeka, Aka Benneth.  2019.  Improving the Reliability and Security of Active Distribution Networks Using SCADA Systems. 2019 IEEE PES/IAS PowerAfrica. :110–115.
The traditional electricity distribution system is rapidly shifting from the passive infrastructure to a more active infrastructure, giving rise to a smart grid. In this project an active electricity distribution network and its components have been studied. A 14-node SCADA-based active distribution network model has been proposed for managing this emerging network infrastructure to ensure reliability and protection of the network The proposed model was developed using matlab /simulink software and the fuzzy logic toolbox. Surge arresters and circuit breakers were modelled and deployed in the network at different locations for protection and isolation of fault conditions. From the reliability analysis of the proposed model, the failure rate and outage hours were reduced due to better response of the system to power fluctuations and fault conditions.
2020-02-10
Singh, Neeraj Kumar, Mahajan, Vasundhara.  2019.  Fuzzy Logic for Reducing Data Loss during Cyber Intrusion in Smart Grid Wireless Network. 2019 IEEE Student Conference on Research and Development (SCOReD). :192–197.
Smart grid consists of smart devices to control, record and analyze the grid power flow. All these devices belong to the latest technology, which is used to interact through the wireless network making the grid communication network vulnerable to cyber attack. This paper deals with a novel approach using altering the Internet Protocol (IP) address of the smart grid communication network using fuzzy logic according to the degree of node. Through graph theory approach Wireless Communication Network (WCN) is designed by considering each node of the system as a smart sensor. In this each node communicates with other nearby nodes for exchange of data. Whenever there is cyber intrusion the WCN change its IP using proposed fuzzy rules, where higher degree nodes are given the preference to change first with extreme IP available in the system. Using the proposed algorithm, different IEEE test systems are simulated and compared with existing Dynamic Host Configuration Protocol (DHCP). The fuzzy logic approach reduces the data loss and improves the system response time.
2020-01-27
Salamai, Abdullah, Hussain, Omar, Saberi, Morteza.  2019.  Decision Support System for Risk Assessment Using Fuzzy Inference in Supply Chain Big Data. 2019 International Conference on High Performance Big Data and Intelligent Systems (HPBD IS). :248–253.

Currently, organisations find it difficult to design a Decision Support System (DSS) that can predict various operational risks, such as financial and quality issues, with operational risks responsible for significant economic losses and damage to an organisation's reputation in the market. This paper proposes a new DSS for risk assessment, called the Fuzzy Inference DSS (FIDSS) mechanism, which uses fuzzy inference methods based on an organisation's big data collection. It includes the Emerging Association Patterns (EAP) technique that identifies the important features of each risk event. Then, the Mamdani fuzzy inference technique and several membership functions are evaluated using the firm's data sources. The FIDSS mechanism can enhance an organisation's decision-making processes by quantifying the severity of a risk as low, medium or high. When it automatically predicts a medium or high level, it assists organisations in taking further actions that reduce this severity level.

Fuchs, Caro, Spolaor, Simone, Nobile, Marco S., Kaymak, Uzay.  2019.  A Swarm Intelligence Approach to Avoid Local Optima in Fuzzy C-Means Clustering. 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–6.
Clustering analysis is an important computational task that has applications in many domains. One of the most popular algorithms to solve the clustering problem is fuzzy c-means, which exploits notions from fuzzy logic to provide a smooth partitioning of the data into classes, allowing the possibility of multiple membership for each data sample. The fuzzy c-means algorithm is based on the optimization of a partitioning function, which minimizes inter-cluster similarity. This optimization problem is known to be NP-hard and it is generally tackled using a hill climbing method, a local optimizer that provides acceptable but sub-optimal solutions, since it is sensitive to initialization and tends to get stuck in local optima. In this work we propose an alternative approach based on the swarm intelligence global optimization method Fuzzy Self-Tuning Particle Swarm Optimization (FST-PSO). We solve the fuzzy clustering task by optimizing fuzzy c-means' partitioning function using FST-PSO. We show that this population-based metaheuristics is more effective than hill climbing, providing high quality solutions with the cost of an additional computational complexity. It is noteworthy that, since this particle swarm optimization algorithm is self-tuning, the user does not have to specify additional hyperparameters for the optimization process.
2020-01-20
Elisa, Noe, Yang, Longzhi, Fu, Xin, Naik, Nitin.  2019.  Dendritic Cell Algorithm Enhancement Using Fuzzy Inference System for Network Intrusion Detection. 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–6.

Dendritic cell algorithm (DCA) is an immune-inspired classification algorithm which is developed for the purpose of anomaly detection in computer networks. The DCA uses a weighted function in its context detection phase to process three categories of input signals including safe, danger and pathogenic associated molecular pattern to three output context values termed as co-stimulatory, mature and semi-mature, which are then used to perform classification. The weighted function used by the DCA requires either manually pre-defined weights usually provided by the immunologists, or empirically derived weights from the training dataset. Neither of these is sufficiently flexible to work with different datasets to produce optimum classification result. To address such limitation, this work proposes an approach for computing the three output context values of the DCA by employing the recently proposed TSK+ fuzzy inference system, such that the weights are always optimal for the provided data set regarding a specific application. The proposed approach was validated and evaluated by applying it to the two popular datasets KDD99 and UNSW NB15. The results from the experiments demonstrate that, the proposed approach outperforms the conventional DCA in terms of classification accuracy.

2019-12-09
Tsochev, Georgi, Trifonov, Roumen, Yoshinov, Radoslav, Manolov, Slavcho, Pavlova, Galya.  2019.  Improving the Efficiency of IDPS by Using Hybrid Methods from Artificial Intelligence. 2019 International Conference on Information Technologies (InfoTech). :1-4.

The present paper describes some of the results obtained in the Faculty of Computer Systems and Technology at Technical University of Sofia in the implementation of project related to the application of intelligent methods for increasing the security in computer networks. Also is made a survey about existing hybrid methods, which are using several artificial intelligent methods for cyber defense. The paper introduces a model for intrusion detection systems where multi agent systems are the bases and artificial intelligence are applicable by the means simple real-time models constructed in laboratory environment.

2019-05-01
Naik, N., Shang, C., Shen, Q., Jenkins, P..  2018.  Vigilant Dynamic Honeypot Assisted by Dynamic Fuzzy Rule Interpolation. 2018 IEEE Symposium Series on Computational Intelligence (SSCI). :1731–1738.

Dynamic Fuzzy Rule Interpolation (D-FRI) offers a dynamic rule base for fuzzy systems which is especially useful for systems with changing requirements and limited prior knowledge. This suggests a possible application of D-FRI in the area of network security due to the volatility of the traffic. A honeypot is a valuable tool in the field of network security for baiting attackers and collecting their information. However, typically designed with fewer resources they are not considered as a primary security tool for use in network security. Consequently, such honeypots can be vulnerable to many security attacks. One such attack is a spoofing attack which can cause severe damage to the honeypot, making it inefficient. This paper presents a vigilant dynamic honeypot based on the D-FRI approach for use in predicting and alerting of spoofing attacks on the honeypot. First, it proposes a technique for spoofing attack identification based on the analysis of simulated attack data. Then, the paper employs the identification technique to develop a D-FRI based vigilant dynamic honeypot, allowing the honeypot to predict and alert that a spoofing attack is taking place in the absence of matching rules. The resulting system is capable of learning and maintaining a dynamic rule base for more accurate identification of potential spoofing attacks with respect to the changing traffic conditions of the network.

Berjab, N., Le, H. H., Yu, C., Kuo, S., Yokota, H..  2018.  Hierarchical Abnormal-Node Detection Using Fuzzy Logic for ECA Rule-Based Wireless Sensor Networks. 2018 IEEE 23rd Pacific Rim International Symposium on Dependable Computing (PRDC). :289-298.

The Internet of things (IoT) is a distributed, networked system composed of many embedded sensor devices. Unfortunately, these devices are resource constrained and susceptible to malicious data-integrity attacks and failures, leading to unreliability and sometimes to major failure of parts of the entire system. Intrusion detection and failure handling are essential requirements for IoT security. Nevertheless, as far as we know, the area of data-integrity detection for IoT has yet to receive much attention. Most previous intrusion-detection methods proposed for IoT, particularly for wireless sensor networks (WSNs), focus only on specific types of network attacks. Moreover, these approaches usually rely on using precise values to specify abnormality thresholds. However, sensor readings are often imprecise and crisp threshold values are inappropriate. To guarantee a lightweight, dependable monitoring system, we propose a novel hierarchical framework for detecting abnormal nodes in WSNs. The proposed approach uses fuzzy logic in event-condition-action (ECA) rule-based WSNs to detect malicious nodes, while also considering failed nodes. The spatiotemporal semantics of heterogeneous sensor readings are considered in the decision process to distinguish malicious data from other anomalies. Following our experiments with the proposed framework, we stress the significance of considering the sensor correlations to achieve detection accuracy, which has been neglected in previous studies. Our experiments using real-world sensor data demonstrate that our approach can provide high detection accuracy with low false-alarm rates. We also show that our approach performs well when compared to two well-known classification algorithms.

Pratama, R. F., Suwastika, N. A., Nugroho, M. A..  2018.  Design and Implementation Adaptive Intrusion Prevention System (IPS) for Attack Prevention in Software-Defined Network (SDN) Architecture. 2018 6th International Conference on Information and Communication Technology (ICoICT). :299-304.

Intrusion Prevention System (IPS) is a tool for securing networks from any malicious packet that could be sent from specific host. IPS can be installed on SDN network that has centralized logic architecture, so that IPS doesnt need to be installed on lots of nodes instead it has to be installed alongside the controller as center of logic network. IPS still has a flaw and that is the block duration would remain the same no matter how often a specific host attacks. For this reason, writer would like to make a system that not only integrates IPS on the SDN, but also designs an adaptive IPS by utilizing a fuzzy logic that can decide how long blocks are based on the frequency variable and type of attacks. From the results of tests that have been done, SDN network that has been equipped with adaptive IPS has the ability to detect attacks and can block the attacker host with the duration based on the frequency and type of attacks. The final result obtained is to make the SDN network safer by adding 0.228 milliseconds as the execute time required for the fuzzy algorithm in one process.

Sowah, R., Ofoli, A., Koumadi, K., Osae, G., Nortey, G., Bempong, A. M., Agyarkwa, B., Apeadu, K. O..  2018.  Design and Implementation of a Fire Detection andControl System with Enhanced Security and Safety for Automobiles Using Neuro-Fuzzy Logic. 2018 IEEE 7th International Conference on Adaptive Science Technology (ICAST). :1-8.

Automobiles provide comfort and mobility to owners. While they make life more meaningful they also pose challenges and risks in their safety and security mechanisms. Some modern automobiles are equipped with anti-theft systems and enhanced safety measures to safeguard its drivers. But at times, these mechanisms for safety and secured operation of automobiles are insufficient due to various mechanisms used by intruders and car thieves to defeat them. Drunk drivers cause accidents on our roads and thus the need to safeguard the driver when he is intoxicated and render the car to be incapable of being driven. These issues merit an integrated approach to safety and security of automobiles. In the light of these challenges, an integrated microcontroller-based hardware and software system for safety and security of automobiles to be fixed into existing vehicle architecture, was designed, developed and deployed. The system submodules are: (1) Two-step ignition for automobiles, namely: (a) biometric ignition and (b) alcohol detection with engine control, (2) Global Positioning System (GPS) based vehicle tracking and (3) Multisensor-based fire detection using neuro-fuzzy logic. All submodules of the system were implemented using one microcontroller, the Arduino Mega 2560, as the central control unit. The microcontroller was programmed using C++11. The developed system performed quite well with the tests performed on it. Given the right conditions, the alcohol detection subsystem operated with a 92% efficiency. The biometric ignition subsystem operated with about 80% efficiency. The fire detection subsystem operated with a 95% efficiency in locations registered with the neuro-fuzzy system. The vehicle tracking subsystem operated with an efficiency of 90%.

Nadeem, Humaira, Rabbani, Imran Mujaddid, Aslam, Muhammad, M, Martinez Enriquez A..  2018.  KNN-Fuzzy Classification for Cloud Service Selection. Proceedings of the 2Nd International Conference on Future Networks and Distributed Systems. :66:1-66:8.

Cloud computing is an emerging technology that provides services to its users via Internet. It also allows sharing of resources there by reducing cost, money and space. With the popularity of cloud and its advantages, the trend of information industry shifting towards cloud services is increasing tremendously. Different cloud service providers are there on internet to provide services to the users. These services provided have certain parameters to provide better usage. It is difficult for the users to select a cloud service that is best suited to their requirements. Our proposed approach is based on data mining classification technique with fuzzy logic. Proposed algorithm uses cloud service design factors (security, agility and assurance etc.) and international standards to suggest the cloud service. The main objective of this research is to enable the end cloud users to choose best service as per their requirements and meeting international standards. We test our system with major cloud provider Google, Microsoft and Amazon.

Kotenko, Igor, Ageev, Sergey, Saenko, Igor.  2018.  Implementation of Intelligent Agents for Network Traffic and Security Risk Analysis in Cyber-Physical Systems. Proceedings of the 11th International Conference on Security of Information and Networks. :22:1-22:4.

The paper offers an approach for implementation of intelligent agents intended for network traffic and security risk analysis in cyber-physical systems. The agents are based on the algorithm of pseudo-gradient adaptive anomaly detection and fuzzy logical inference. The suggested algorithm operates in real time. The fuzzy logical inference is used for regulation of algorithm parameters. The variants of the implementation are proposed. The experimental assessment of the approach confirms its high speed and adequate accuracy for network traffic analysis.

Shirsat, S. D..  2018.  Demonstrating Different Phishing Attacks Using Fuzzy Logic. 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT). :57-61.

Phishing has increased tremendously over last few years and it has become a serious threat to global security and economy. Existing literature dealing with the problem of phishing is scarce. Phishing is a deception technique that uses a combination of technology and social engineering to acquire sensitive information such as online banking passwords, credit card or bank account details [2]. Phishing can be done through emails and websites to collect confidential information. Phishers design fraudulent websites which look similar to the legitimate websites and lure the user to visit the malicious website. Therefore, the users must be aware of malicious websites to protect their sensitive data [1]. But it is very difficult to distinguish between legitimate and fake website especially for nontechnical users [4]. Moreover, phishing sites are growing rapidly. The aim of this paper is to demonstrate phishing detection using fuzzy logic and interpreting results using different defuzzification methods.

Pillutla, H., Arjunan, A..  2018.  A Brief Review of Fuzzy Logic and Its Usage Towards Counter-Security Issues. 2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). :1-6.

Nowadays, most of the world's population has become much dependent on computers for banking, healthcare, shopping, and telecommunication. Security has now become a basic norm for computers and its resources since it has become inherently insecure. Security issues like Denial of Service attacks, TCP SYN Flooding attacks, Packet Dropping attacks and Distributed Denial of Service attacks are some of the methods by which unauthorized users make the resource unavailable to authorized users. There are several security mechanisms like Intrusion Detection System, Anomaly detection and Trust model by which we can be able to identify and counter the abuse of computer resources by unauthorized users. This paper presents a survey of several security mechanisms which have been implemented using Fuzzy logic. Fuzzy logic is one of the rapidly developing technologies, which is used in a sophisticated control system. Fuzzy logic deals with the degree of truth rather than the Boolean logic, which carries the values of either true or false. So instead of providing only two values, we will be able to define intermediate values.

Naik, N., Jenkins, P., Kerby, B., Sloane, J., Yang, L..  2018.  Fuzzy Logic Aided Intelligent Threat Detection in Cisco Adaptive Security Appliance 5500 Series Firewalls. 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1-8.

Cisco Adaptive Security Appliance (ASA) 5500 Series Firewall is amongst the most popular and technically advanced for securing organisational networks and systems. One of its most valuable features is its threat detection function which is available on every version of the firewall running a software version of 8.0(2) or higher. Threat detection operates at layers 3 and 4 to determine a baseline for network traffic, analysing packet drop statistics and generating threat reports based on traffic patterns. Despite producing a large volume of statistical information relating to several security events, further effort is required to mine and visually report more significant information and conclude the security status of the network. There are several commercial off-the-shelf tools available to undertake this task, however, they are expensive and may require a cloud subscription. Furthermore, if the information transmitted over the network is sensitive or requires confidentiality, the involvement of a third party or a third-party tool may place organisational security at risk. Therefore, this paper presents a fuzzy logic aided intelligent threat detection solution, which is a cost-free, intuitive and comprehensible solution, enhancing and simplifying the threat detection process for all. In particular, it employs a fuzzy reasoning system based on the threat detection statistics, and presents results/threats through a developed dashboard user interface, for ease of understanding for administrators and users. The paper further demonstrates the successful utilisation of a fuzzy reasoning system for selected and prioritised security events in basic threat detection, although it can be extended to encompass more complex situations, such as complete basic threat detection, advanced threat detection, scanning threat detection, and customised feature based threat detection.

Douzi, S., Benchaji, I., ElOuahidi, B..  2018.  Hybrid Approach for Intrusion Detection Using Fuzzy Association Rules. 2018 2nd Cyber Security in Networking Conference (CSNet). :1-3.

Rapid development of internet and network technologies has led to considerable increase in number of attacks. Intrusion detection system is one of the important ways to achieve high security in computer networks. However, it have curse of dimensionality which tends to increase time complexity and decrease resource utilization. To improve the ability of detecting anomaly intrusions, a combined algorithm is proposed based on Weighted Fuzzy C-Mean Clustering Algorithm (WFCM) and Fuzzy logic. Decision making is performed in two stages. In the first stage, WFCM algorithm is applied to reduce the input data space. The reduced dataset is then fed to Fuzzy Logic scheme to build the fuzzy sets, membership function and the rules that decide whether an instance represents an anomaly or not.

2019-04-01
Alibadi, S. H., Sadkhan, S. B..  2018.  A Proposed Security Evaluation Method for Bluetooth E0Based on Fuzzy Logic. 2018 International Conference on Advanced Science and Engineering (ICOASE). :324–329.

The security level is very important in Bluetooth, because the network or devices using secure communication, are susceptible to many attacks against the transmitted data received through eavesdropping. The cryptosystem designers needs to know the complexity of the designed Bluetooth E0. And what the advantages given by any development performed on any known Bluetooth E0Encryption method. The most important criteria can be used in evaluation method is considered as an important aspect. This paper introduce a proposed fuzzy logic technique to evaluate the complexity of Bluetooth E0Encryption system by choosing two parameters, which are entropy and correlation rate, as inputs to proposed fuzzy logic based Evaluator, which can be applied with MATLAB system.

2019-03-11
Ghafoor, K. Z., Kong, L., Sadiq, A. S., Doukha, Z., Shareef, F. M..  2018.  Trust-aware routing protocol for mobile crowdsensing environments. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :82–87.
Link quality, trust management and energy efficiency are considered as main factors that affect the performance and lifetime of Mobile CrowdSensing (MCS). Routing packets toward the sink node can be a daunting task if aforementioned factors are considered. Correspondingly, routing packets by considering only shortest path or residual energy lead to suboptimal data forwarding. To this end, we propose a Fuzzy logic based Routing (FR) solution that incorporates social behaviour of human beings, link quality, and node quality to make the optimal routing decision. FR leverages friendship mechanism for trust management, Signal to Noise Ratio (SNR) to assure good link quality node selection, and residual energy for long lasting sensor lifetime. Extensive simulations show that the FR solution outperforms the existing approaches in terms of network lifetime and packet delivery ratio.
2018-10-26
Vorobiev, E. G., Petrenko, S. A., Kovaleva, I. V., Abrosimov, I. K..  2017.  Analysis of computer security incidents using fuzzy logic. 2017 XX IEEE International Conference on Soft Computing and Measurements (SCM). :369–371.

The work proposes and justifies a processing algorithm of computer security incidents based on the author's signatures of cyberattacks. Attention is also paid to the design pattern SOPKA based on the Russian ViPNet technology. Recommendations are made regarding the establishment of the corporate segment SOPKA, which meets the requirements of Presidential Decree of January 15, 2013 number 31c “On the establishment of the state system of detection, prevention and elimination of the consequences of cyber-attacks on information resources of the Russian Federation” and “Concept of the state system of detection, prevention and elimination of the consequences of cyber-attacks on information resources of the Russian Federation” approved by the President of the Russian Federation on December 12, 2014, No K 1274.

2018-09-28
Demkiv, L., Lozynskyy, A., Lozynskyy, O., Demkiv, I..  2017.  A new approach to dynamical system's fuzzy controller synthesis: Application of the unstable subsystem. 2017 International Conference on Modern Electrical and Energy Systems (MEES). :84–87.

A general approach to the synthesis of the conditionally unstable fuzzy controller is introduced in this paper. This approach allows tuning the output signal of the system for both fast and smooth transient. Fuzzy logic allows combining the properties of several strategies of system tuning dependent on the state of the system. The utilization of instability allows achieving faster transient when the error of the system output is beyond the predefined value. Later the system roots are smoothly moved to the left-hand side of the complex s-plane due to the change of the membership function values. The results of the proposed approaches are compared with the results obtained using traditional methods of controller synthesis.

2018-08-23
Rahman, Fatin Hamadah, Au, Thien Wan, Newaz, S. H. Shah, Suhaili, Wida Susanty.  2017.  Trustworthiness in Fog: A Fuzzy Approach. Proceedings of the 2017 VI International Conference on Network, Communication and Computing. :207–211.

Trust management issue in cloud domain has been a persistent research topic discussed among scholars. Similar issue is bound to occur in the surfacing fog domain. Although fog and cloud are relatively similar, evaluating trust in fog domain is more challenging than in cloud. Fog's high mobility support, distributive nature, and closer distance to end user means that they are likely to operate in vulnerable environments. Unlike cloud, fog has little to no human intervention, and lack of redundancy. Hence, it could experience downtime at any given time. Thus it is harder to trust fogs given their unpredictable status. These distinguishing factors, combined with the existing factors used for trust evaluation in cloud can be used as metrics to evaluate trust in fog. This paper discusses a use case of a campus scenario with several fog servers, and the metrics used in evaluating the trustworthiness of the fog servers. While fuzzy logic method is used to evaluate the trust, the contribution of this study is the identification of fuzzy logic configurations that could alter the trust value of a fog.