Visible to the public Biblio

Found 122 results

Filters: Keyword is Ciphers  [Clear All Filters]
Nooh, Sameer A..  2020.  Cloud Cryptography: User End Encryption. 2020 International Conference on Computing and Information Technology (ICCIT-1441). :1—4.
Cloud computing has made the life of individual users and work of business corporations so much easier by providing them data storage services at very low costs. Individual users can store and access their data through shared cloud storage service anywhere anytime. Similarly, business corporation consumers of cloud computing can store, manage, process and access their big data with quite an ease. However, the security and privacy of users' data remains vulnerable in cloud computing Availability, integrity and confidentiality are the three primary elements that users consider before signing up for cloud computing services. Many public and private cloud services have experienced security breaches and unauthorized access incidents. This paper suggests user end cryptography of data before uploading it to a cloud storage service platform like Google Drive, Microsoft, Amazon and CloudSim etc. The proposed cryptography algorithm is based on symmetric key cryptography model and has been implemented on Amazon S3 cloud space service.
Bakhtiyor, Abdurakhimov, Zarif, Khudoykulov, Orif, Allanov, Ilkhom, Boykuziev.  2020.  Algebraic Cryptanalysis of O'zDSt 1105:2009 Encryption Algorithm. 2020 International Conference on Information Science and Communications Technologies (ICISCT). :1—7.
In this paper, we examine algebraic attacks on the O'zDSt 1105:2009. We begin with a brief review of the meaning of algebraic cryptanalysis, followed by an algebraic cryptanalysis of O'zDSt 1105:2009. Primarily O'zDSt 1105:2009 encryption algorithm is decomposed and each transformation in it is algebraic described separately. Then input and output of each transformation are expressed with other transformation, encryption key, plaintext and cipher text. Created equations, unknowns on it and degree of unknowns are analyzed, and then overall result is given. Based on experimental results, it is impossible to save all system of equations that describes all transformations in O'zDSt 1105:2009 standard. Because, this task requires 273 bytes for the second round. For this reason, it is advisable to evaluate the parameters of the system of algebraic equations, representing the O'zDSt 1105:2009 standard, theoretically.
Chibaya, Colin, Jowa, Viola Jubile, Rupere, Taurayi.  2020.  A HES for Low Speed Processors. 2020 2nd International Multidisciplinary Information Technology and Engineering Conference (IMITEC). :1—6.
Adaptation of e-commerce in third world countries requires more secure computing facilities. Online data is vulnerable and susceptible to active attacks. Hundreds of security mechanisms and services have been proposed to curb this challenge. However, available security mechanisms, sufficiently strong, are heavy for the machines used. To secure online data where machines' processing power and memory are deficient, a Hybrid Encryption Standard (HES) is proposed. The HES is built on the Data Encryption Standard (DES) algorithm and its siblings. The component units of the DES are redesigned towards reduced demands for processing power and memory. Precisely, white box designs of IP tables, PC tables, Expansion tables, Rotation tables, S-boxes and P-boxes are proposed, all aimed at reducing the processing time and memory demands. Evaluation of the performance of the HES algorithm against the performance of the traditional DES algorithm reveal that the HES out-performs the DES with regards to speed, memory demands, and general acceptance by novice practitioners in the cryptography field. In addition, reproducibility and flexibility are attractive features of the HES over the DES.
Salim, M. N., Hutahaean, I. W., Susanti, B. H..  2020.  Fixed Point Attack on Lin et al.’s Modified Hash Function Scheme based on SMALLPRESENT-[8] Algorithm. 2020 International Conference on ICT for Smart Society (ICISS). CFP2013V-ART:1–7.
Lin et al.'s scheme is a hash function Message Authentication Codes (MAC) block cipher based scheme that's composed of the compression function. Fixed point messages have been found on SMALLPRESENT-[s] algorithm. The vulnerability of block cipher algorithm against fixed point attacks can affect the vulnerability of block cipher based hash function schemes. This paper applies fixed point attack against Lin et al.'s modified scheme based on SMALLPRESENT-[8] algorithm. Fixed point attack was done using fixed point message from SMALLPRESENT-[8] algorithm which used as Initial Value (IV) on the scheme branch. The attack result shows that eight fixed point messages are successfully discovered on the B1 branch. The fixed point messages discovery on B1 and B2 branches form 18 fixed point messages on Lin et al.'s modified scheme with different IVs and keys. The discovery of fixed point messages shows that Lin et al.'s modified scheme is vulnerable to fixed point attack.
Feng, G., Zhang, C., Si, Y., Lang, L..  2020.  An Encryption and Decryption Algorithm Based on Random Dynamic Hash and Bits Scrambling. 2020 International Conference on Communications, Information System and Computer Engineering (CISCE). :317–320.
This paper proposes a stream cipher algorithm. Its main principle is conducting the binary random dynamic hash with the help of key. At the same time of calculating the hash mapping address of plaintext, change the value of plaintext through bits scrambling, and then map it to the ciphertext space. This encryption method has strong randomness, and the design of hash functions and bits scrambling is flexible and diverse, which can constitute a set of encryption and decryption methods. After testing, the code evenness of the ciphertext obtained using this method is higher than that of the traditional method under some extreme conditions..
Gladwin, S. J., Gowthami, P. Lakshmi.  2020.  Combined Cryptography and Steganography for Enhanced Security in Suboptimal Images. 2020 International Conference on Artificial Intelligence and Signal Processing (AISP). :1–5.
Technology has developed to a very great extent, and the use of smart systems has introduced an increasing threat to data security and privacy. Most of the applications are built-in unsecured operating systems, and so there is a growing threat to information cloning, forging tampering counterfeiting, etc.. This will lead to an un-compensatory loss for end-users particularly in banking applications and personal data in social media. A robust and effective algorithm based on elliptic curve cryptography combined with Hill cipher has been proposed to mitigate such threats and increase information security. In this method, ciphertext and DCT coefficients of an image, embedded into the base image based on LSB watermarking. The ciphertext is generated based on the Hill Cipher algorithm. Hill Cipher can, however, be easily broken and has weak security and to add complexity, Elliptic curve cryptography (ECC), is combined with Hill cipher. Based on the ECC algorithm, the key is produced, and this key is employed to generate ciphertext through the Hill cipher algorithm. This combination of both steganography and cryptography results in increased authority and ownership of the data for sub-optimal media applications. It is hard to extract the hidden data and the image without the proper key. The performance for hiding text and image into an image data have been analyzed for sub-optimal multimedia applications.
Zhu, L., Zhou, X., Zhang, X..  2020.  A Reversible Meaningful Image Encryption Scheme Based on Block Compressive Sensing. 2020 IEEE 3rd International Conference on Information Communication and Signal Processing (ICICSP). :326–330.
An efficient and reversible meaningful image encryption scheme is proposed in this paper. The plain image is first compressed and encrypted simultaneously by Adaptive Block Compressive Sensing (ABCS) framework to create a noise-like secret image. Next, Least Significant Bit (LSB) embedding is employed to embed the secret image into a carrier image to generate the final meaningful cipher image. In this scheme, ABCS improves the compression and efficiency performance, and the embedding and extraction operations are absolutely reversible. The simulation results and security analyses are presented to demonstrate the effectiveness, compression, secrecy of the proposed scheme.
Akkasaligar, P. T., Biradar, S..  2020.  Medical Image Compression and Encryption using Chaos based DNA Cryptography. 2020 IEEE Bangalore Humanitarian Technology Conference (B-HTC). :1–5.
In digital communication, the transmission of medical images over communication network is very explosive. We need a communication system to transmit the medical information rapidly and securely. In this manuscript, we propose a cryptosystem with novel encoding strategy and lossless compression technique. The chaos based DNA cryptography is used to enrich security of medical images. The lossless Discrete Haar Wavelet Transform is used to reduce space and time efficiency during transmission. The cryptanalysis proves that proposed cryptosystem is secure against different types of attacks. The compression ratio and pixel comparison is performed to verify the similarity of retained medical image.
Behera, S., Prathuri, J. R..  2020.  Application of Homomorphic Encryption in Machine Learning. 2020 2nd PhD Colloquium on Ethically Driven Innovation and Technology for Society (PhD EDITS). :1–2.
The linear regression is a machine learning algorithm used for prediction. But if the input data is in plaintext form then there is a high probability that the sensitive information will get leaked. To overcome this, here we are proposing a method where the input data is encrypted using Homomorphic encryption. The machine learning algorithm can be used on this encrypted data for prediction while maintaining the privacy and secrecy of the sensitive data. The output from this model will be an encrypted result. This encrypted result will be decrypted using a Homomorphic decryption technique to get the plain text. To determine the accuracy of our result, we will compare it with the result obtained after applying the linear regression algorithm on the plain text.
Valocký, F., Puchalik, M., Orgon, M..  2020.  Implementing Asymmetric Cryptography in High-Speed Data Transmission over Power Line. 2020 11th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0849–0854.
The article presents a proposal for implementing asymmetric cryptography, specifically the elliptic curves for the protection of high-speed data transmission in a corporate network created on the platform of PLC (Power Line Communications). The solution uses an open-source software library OpenSSL. As part of the design, an experimental workplace was set up, a DHCP and FTP server was established. The possibility of encryption with the selected own elliptic curve from the OpenSSL library was tested so that key pairs (public and private keys) were generated using a software tool. A shared secret was created between communication participants and subsequently, data encryption and decryption were performed.
Kabir, N., Kamal, S..  2020.  Secure Mobile Sensor Data Transfer using Asymmetric Cryptography Algorithms. 2020 International Conference on Cyber Warfare and Security (ICCWS). :1–6.
Mobile sensors are playing a vital role in various applications of a normal day life. Key size in securing data is an important issue to highlight in mobile sensor data transfer between a smart device and a data storage component. Such key size may affect memory storage and processing power of a mobile device. Therefore, we proposed a secure mobile sensor data transfer protocol called secure sensor protocol (SSP). SSP is based on Elliptic Curve Cryptography (ECC), which generates small size key in contrast to conventional asymmetric algorithms like RSA and Diffie Hellman. SSP receive values from light sensor and magnetic flux meter of a smart device. SSP encrypts mobile sensor data using ECC and afterwards it stores cipher information in MySQL database to receive remote data access. We compared the performance of the ECC with other existing asymmetric cryptography algorithms in terms of secure mobile sensor data transfer based on data encryption and decryption time, key size and encoded data size. In-addition, SSP shows better results than other cryptography algorithms in terms of secure mobile sensor data transfer.
Kubba, Z. M. Jawad, Hoomod, H. K..  2019.  A Hybrid Modified Lightweight Algorithm Combined of Two Cryptography Algorithms PRESENT and Salsa20 Using Chaotic System. 2019 First International Conference of Computer and Applied Sciences (CAS). :199–203.

Cryptography algorithms play a critical role in information technology against various attacks witnessed in the digital era. Many studies and algorithms are done to achieve security issues for information systems. The high complexity of computational operations characterises the traditional cryptography algorithms. On the other hand, lightweight algorithms are the way to solve most of the security issues that encounter applying traditional cryptography in constrained devices. However, a symmetric cipher is widely applied for ensuring the security of data communication in constraint devices. In this study, we proposed a hybrid algorithm based on two cryptography algorithms PRESENT and Salsa20. Also, a 2D logistic map of a chaotic system is applied to generate pseudo-random keys that produce more complexity for the proposed cipher algorithm. The goal of the proposed algorithm is to present a hybrid algorithm by enhancing the complexity of the current PRESENT algorithm while keeping the performance of computational operations as minimal. The proposed algorithm proved working efficiently with fast executed time, and the analysed result of the generated sequence keys passed the randomness of the NIST suite.

Karthiga, K., Balamurugan, G., Subashri, T..  2020.  Computational Analysis of Security Algorithm on 6LowPSec. 2020 International Conference on Communication and Signal Processing (ICCSP). :1437–1442.
In order to the development of IoT, IETF developed a standard named 6LoWPAN for increase the usage of IPv6 to the tiny and smart objects with low power. Generally, the 6LoWPAN radio link needs end to end (e2e) security for its IPv6 communication process. 6LoWPAN requires light weight variant of security solutions in IPSec. A new security approach of 6LoWPAN at adaptation layer to provide e2e security with light weight IPSec. The existing security protocol IPsec is not suitable for its 6LoWPAN IoT environment because it has heavy restrictions on memory, power, duty cycle, additional overhead transmission. The IPSec had packet overhead problem due to share the secret key between two communicating peers by IKE (Internet Key Exchange) protocol. Hence the existing security protocol IPSec solutions are not suitable for lightweight-based security need in 6LoWPAN IoT. This paper describes 6LowPSec protocol with AES-CCM (Cipher block chaining Message authentication code with Counter mode) cryptographic algorithm with key size of 128 bits with minimum power consumption and duty cycle.
K.R., Raghunandan, Aithal, Ganesh, Shetty, Surendra.  2019.  Comparative Analysis of Encryption and Decryption Techniques Using Mersenne Prime Numbers and Phony Modulus to Avoid Factorization Attack of RSA. 2019 International Conference on Advanced Mechatronic Systems (ICAMechS). :152–157.
In this advanced era, it is important to keep up an abnormal state of security for online exchanges. Public Key cryptography assumes an indispensable job in the field of security. Rivest, Shamir and Adleman (RSA) algorithm is being utilized for quite a long time to give online security. RSA is considered as one of the famous Public Key cryptographic algorithm. Nevertheless, a few fruitful assaults are created to break this algorithm because of specific confinements accepted in its derivation. The algorithm's security is principally founded on the issue of factoring large number. If the process factorization is done then, at that point the entire algorithm can end up fragile. This paper presents a methodology which is more secure than RSA algorithm by doing some modifications in it. Public Key exponent n, which is termed as common modulus replaced by phony modulus to avoid the factorization attack and it is constructed by Mersenne prime numbers to provide more efficiency and security. Paper presents a comparative analysis of the proposed algorithm with the conventional RSA algorithm and Dual RSA.
Kassim, Sarah, Megherbi, Ouerdia, Hamiche, Hamid, Djennoune, Saïd, Bettayeb, Maamar.  2019.  Speech encryption based on the synchronization of fractional-order chaotic maps. 2019 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). :1–6.
This work presents a new method of encrypting and decrypting speech based on a chaotic key generator. The proposed scheme takes advantage of the best features of chaotic systems. In the proposed method, the input speech signal is converted into an image which is ciphered by an encryption function using a chaotic key matrix generated from a fractional-order chaotic map. Based on a deadbeat observer, the exact synchronization of system used is established, and the decryption is performed. Different analysis are applied for analyzing the effectiveness of the encryption system. The obtained results confirm that the proposed system offers a higher level of security against various attacks and holds a strong key generation mechanism for satisfactory speech communication.
Jawad Kubba, Zaid M., Hoomod, Haider K..  2019.  A Hybrid Modified Lightweight Algorithm Combined of Two Cryptography Algorithms PRESENT and Salsa20 Using Chaotic System. 2019 First International Conference of Computer and Applied Sciences (CAS). :199–203.
Cryptography algorithms play a critical role in information technology against various attacks witnessed in the digital era. Many studies and algorithms are done to achieve security issues for information systems. The high complexity of computational operations characterises the traditional cryptography algorithms. On the other hand, lightweight algorithms are the way to solve most of the security issues that encounter applying traditional cryptography in constrained devices. However, a symmetric cipher is widely applied for ensuring the security of data communication in constraint devices. In this study, we proposed a hybrid algorithm based on two cryptography algorithms PRESENT and Salsa20. Also, a 2D logistic map of a chaotic system is applied to generate pseudo-random keys that produce more complexity for the proposed cipher algorithm. The goal of the proposed algorithm is to present a hybrid algorithm by enhancing the complexity of the current PRESENT algorithm while keeping the performance of computational operations as minimal. The proposed algorithm proved working efficiently with fast executed time, and the analysed result of the generated sequence keys passed the randomness of the NIST suite.
Manucom, Emraida Marie M., Gerardo, Bobby D., Medina, Ruji P..  2019.  Security Analysis of Improved One-Time Pad Cryptography Using TRNG Key Generator. 2019 IEEE 5th International Conference on Computer and Communications (ICCC). :1515—1521.
Cryptography is one of the important aspect of data and information security. The security strength of cryptographic algorithms rely on the secrecy and randomness of keys. In this study, bitwise operations, Fisher-Yates shuffling algorithm, and cipher text mapping are integrated in the proposed TRNG key generator for One-Time Pad cryptography. Frequency monobit, frequency within a block, and runs tests are performed to evaluate the key randomness. The proposed method is also evaluated in terms of avalanche effect and brute force attack. Tests results indicate that the proposed method generates more random keys and has a higher level of security compared with the usual OTP using PRNG and TRNGs that do not undergo a refining phase.
Mahmood, Riyadh Zaghlool, Fathil, Ahmed Fehr.  2019.  High Speed Parallel RC4 Key Searching Brute Force Attack Based on FPGA. 2019 International Conference on Advanced Science and Engineering (ICOASE). :129—134.

A parallel brute force attack on RC4 algorithm based on FPGA (Field Programmable Gate Array) with an efficient style has been presented. The main idea of this design is to use number of forecast keying methods to reduce the overall clock pulses required depended to key searching operation by utilizes on-chip BRAMs (block RAMs) of FPGA for maximizing the total number of key searching unit with taking into account the highest clock rate. Depending on scheme, 32 key searching units and main controller will be used in one Xilinx XC3S1600E-4 FPGA device, all these units working in parallel and each unit will be searching in a specific range of keys, by comparing the current result with the well-known cipher text if its match the found flag signal will change from 0 to 1 and the main controller will receive this signal and stop the searching operation. This scheme operating at 128-MHz clock frequency and gives us key searching speed of 7.7 × 106 keys/sec. Testing all possible keys (40-bits length), requires only around 39.5h.

Sadkhan, Sattar B., Reda, Dhilal M..  2018.  Best Strategies of Choosing Crypto-System’s Key for Cryptographer and Attacker Based on Game Theory. 2018 Al-Mansour International Conference on New Trends in Computing, Communication, and Information Technology (NTCCIT). :1—6.
One of the most important strength features of crypto-system's is the key space. As a result, whenever the system has more key space, it will be more resistant to attack. The weakest type of attack on the key space is Brute Force attack, which tests all the keys on the ciphertext in order to get the plaintext. But there are several strategies that can be considered by the attacker and cryptographer related to the selection of the right key with the lowest cost (time). Game theory is a mathematical theory that draws the best strategies for most problems. This research propose a new evaluation method which is employing game theory to draw best strategies for both players (cryptographer & attacker).
Singh, Kuhu, Sajnani, Anil Kumar, Kumar Khatri, Sunil.  2019.  Data Security Enhancement in Cloud Computing Using Multimodel Biometric System. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA). :175—179.
Today, data is all around us, every device that has computation power is generating the data and we can assume that in today's world there is about 2 quintillion bytes of data is been generating every day. as data increase in the database of the world servers so as the risk of data leak where we are talking about unlimited confidential data that is available online but as humans are developing their data online so as its security, today we've got hundreds of way to secure out data but not all are very successful or compatible there the big question arises that how to secure our data to hide our all the confidential information online, in other words one's all life work can be found online which is on risk of leak. all that says is today we have cloud above all of our data centers that stores all the information so that one can access anything from anywhere. in this paper we are introducing a new multimodal biometric system that is possible for the future smartphones to be supported where one can upload, download or modify the files using cloud without worrying about the unauthorized access of any third person as this security authentication uses combination of multiple security system available today that are not easy to breach such as DNA encryption which mostly is based on AES cipher here in this paper there we have designed triple layer of security.
Long, Cao-Fang, Xiao, Heng.  2019.  Construction of Big Data Hyperchaotic Mixed Encryption Model for Mobile Network Privacy. 2019 International Conference on Virtual Reality and Intelligent Systems (ICVRIS). :90–93.
Big data of mobile network privacy is vulnerable to clear text attack in the process of storage and mixed network information sharing, which leads to information leakage. Through the mixed encryption of data of mobile network privacy big data to improve the confidentiality and security of mobile network privacy big data, a mobile network privacy big data hybrid encryption algorithm based on hyperchaos theory is proposed. The hybrid encryption key of mobile network privacy big data is constructed by using hyperchaotic nonlinear mapping hybrid encryption technology. Combined with the feature distribution of mobile network privacy big data, the mixed encrypted public key is designed by using Logistic hyperchaotic arrangement method, and a hyperchaotic analytic cipher and block cipher are constructed by using Rossle chaotic mapping. The random piecewise linear combination method is used to design the coding and key of mobile network privacy big data. According to the two-dimensional coding characteristics of mobile network privacy big data in the key authorization protocol, the hybrid encryption and decryption key of mobile network privacy big data is designed, and the mixed encryption and decryption key of mobile network privacy big data is constructed, Realize the privacy of mobile network big data mixed encryption output and key design. The simulation results show that this method has good confidentiality and strong steganography performance, which improves the anti-attack ability of big data, which is used to encrypt the privacy of mobile network.
Maksuti, Silia, Schluga, Oliver, Settanni, Giuseppe, Tauber, Markus, Delsing, Jerker.  2019.  Self-Adaptation Applied to MQTT via a Generic Autonomic Management Framework. 2019 IEEE International Conference on Industrial Technology (ICIT). :1179–1185.
Manufacturing enterprises are constantly exploring new ways to improve their own production processes to address the increasing demand of customized production. However, such enterprises show a low degree of flexibility, which mainly results from the need to configure new production equipment at design and run time. In this paper we propose self-adaptation as an approach to improve data transmission flexibility in Industry 4.0 environments. We implement an autonomic manager using a generic autonomic management framework, which applies the most appropriate data transmission configuration based on security and business process related requirements, such as performance. The experimental evaluation is carried out in a MQTT infrastructure and the results show that using self-adaptation can significantly improve the trade-off between security and performance. We then propose to integrate anomaly detection methods as a solution to support self-adaptation by monitoring and learning the normal behavior of an industrial system and show how this can be used by the generic autonomic management framework.
Fischer, Marten, Scheerhorn, Alfred, Tönjes, Ralf.  2019.  Using Attribute-Based Encryption on IoT Devices with instant Key Revocation. 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). :126–131.
The Internet of Things (IoT) relies on sensor devices to measure real-world phenomena in order to provide IoT services. The sensor readings are shared with multiple entities, such as IoT services, other IoT devices or other third parties. The collected data may be sensitive and include personal information. To protect the privacy of the users, the data needs to be protected through an encryption algorithm. For sharing cryptographic cipher-texts with a group of users Attribute-Based Encryption (ABE) is well suited, as it does not require to create group keys. However, the creation of ABE cipher-texts is slow when executed on resource constraint devices, such as IoT sensors. In this paper, we present a modification of an ABE scheme, which not only allows to encrypt data efficiently using ABE but also reduces the size of the cipher-text, that must be transmitted by the sensor. We also show how our modification can be used to realise an instantaneous key revocation mechanism.
Rodinko, Mariia, Oliynykov, Roman.  2019.  Comparing Performances of Cypress Block Cipher and Modern Lighweight Block Ciphers on Different Platforms. 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S T). :113–116.

The paper is devoted to the comparison of performance of prospective lightweight block cipher Cypress with performances of the known modern lightweight block ciphers such as AES, SPECK, SPARX etc. The measurement was done on different platforms: Windows, Linux and Android. On all platforms selected, the block cipher Cypress showed the best results. The block cipher Cypress-256 showed the highest performance on Windows x32 (almost 3.5 Gbps), 64-bit Linux (over 8 Gbps) and Android (1.3 Gbps). On Windows x64 the best result was obtained by Cypress- 512 (almost 5 Gbps).

Chennam, KrishnaKeerthi, Muddana, Lakshmi.  2018.  Improving Privacy and Security with Fine Grained Access Control Policy using Two Stage Encryption with Partial Shuffling in Cloud. 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information Communication Technology (RTEICT). :686—690.

In a computer world, to identify anyone by doing a job or to authenticate by checking their identification and give access to computer. Access Control model comes in to picture when require to grant the permissions to individual and complete the duties. The access control models cannot give complete security when dealing with cloud computing area, where access control model failed to handle the attributes which are requisite to inhibit access based on time and location. When the data outsourced in the cloud, the information holders expect the security and confidentiality for their outsourced data. The data will be encrypted before outsourcing on cloud, still they want control on data in cloud server, where simple encryption is not a complete solution. To irradiate these issues, unlike access control models proposed Attribute Based Encryption standards (ABE). In ABE schemes there are different types like Key Policy-ABE (KP-ABE), Cipher Text-ABE (CP-ABE) and so on. The proposed method applied the access control policy of CP-ABE with Advanced Encryption Standard and used elliptic curve for key generation by using multi stage encryption which divides the users into two domains, public and private domains and shuffling the data base records to protect from inference attacks.