Visible to the public Biblio

Filters: Keyword is smart grid application  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
G
Gunduz, M. Z., Das, R..  2018.  A comparison of cyber-security oriented testbeds for IoT-based smart grids. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1–6.

Combining conventional power networks and information communication technologies forms smart grid concept. Researches on the evolution of conventional power grid system into smart grid continue thanks to the development of communication and information technologies hopefully. Testing of smart grid systems is usually performed in simulation environments. However, achieving more effective real-world implementations, a smart grid application needs a real-world test environment, called testbed. Smart grid, which is the combination of conventional electricity line with information communication technologies, is vulnerable to cyber-attacks and this is a key challenge improving the smart grid. The vulnerabilities to cyber-attacks in smart grid arise from information communication technologies' nature inherently. Testbeds, which cyber-security researches and studies can be performed, are needed to find effective solutions against cyber-attacks capabilities in smart grid practices. In this paper, an evaluation of existing smart grid testbeds with the capability of cyber security is presented. First, background, domains, research areas and security issues in smart grid are introduced briefly. Then smart grid testbeds and features are explained. Also, existing security-oriented testbeds and cyber-attack testing capabilities of testbeds are evaluated. Finally, we conclude the study and give some recommendations for security-oriented testbed implementations.

P
Paramathma, M. K., Devaraj, D., Reddy, B. S..  2016.  Artificial neural network based static security assessment module using PMU measurements for smart grid application. 2016 International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS). :1–5.

Power system security is one of the key issues in the operation of smart grid system. Evaluation of power system security is a big challenge considering all the contingencies, due to huge computational efforts involved. Phasor measurement unit plays a vital role in real time power system monitoring and control. This paper presents static security assessment scheme for large scale inter connected power system with Phasor measurement unit using Artificial Neural Network. Voltage magnitude and phase angle are used as input variables of the ANN. The optimal location of PMU under base case and critical contingency cases are determined using Genetic algorithm. The performance of the proposed optimization model was tested with standard IEEE 30 bus system incorporating zero injection buses and successful results have been obtained.

V
Venugopalan, V., Patterson, C. D., Shila, D. M..  2016.  Detecting and thwarting hardware trojan attacks in cyber-physical systems. 2016 IEEE Conference on Communications and Network Security (CNS). :421–425.

Cyber-physical system integrity requires both hardware and software security. Many of the cyber attacks are successful as they are designed to selectively target a specific hardware or software component in an embedded system and trigger its failure. Existing security measures also use attack vector models and isolate the malicious component as a counter-measure. Isolated security primitives do not provide the overall trust required in an embedded system. Trust enhancements are proposed to a hardware security platform, where the trust specifications are implemented in both software and hardware. This distribution of trust makes it difficult for a hardware-only or software-only attack to cripple the system. The proposed approach is applied to a smart grid application consisting of third-party soft IP cores, where an attack on this module can result in a blackout. System integrity is preserved in the event of an attack and the anomalous behavior of the IP core is recorded by a supervisory module. The IP core also provides a snapshot of its trust metric, which is logged for further diagnostics.

Z
Zhuo Lu, Wenye Wang, Wang, C..  2015.  Camouflage Traffic: Minimizing Message Delay for Smart Grid Applications under Jamming. Dependable and Secure Computing, IEEE Transactions on. 12:31-44.

Smart grid is a cyber-physical system that integrates power infrastructures with information technologies. To facilitate efficient information exchange, wireless networks have been proposed to be widely used in the smart grid. However, the jamming attack that constantly broadcasts radio interference is a primary security threat to prevent the deployment of wireless networks in the smart grid. Hence, spread spectrum systems, which provide jamming resilience via multiple frequency and code channels, must be adapted to the smart grid for secure wireless communications, while at the same time providing latency guarantee for control messages. An open question is how to minimize message delay for timely smart grid communication under any potential jamming attack. To address this issue, we provide a paradigm shift from the case-by-case methodology, which is widely used in existing works to investigate well-adopted attack models, to the worst-case methodology, which offers delay performance guarantee for smart grid applications under any attack. We first define a generic jamming process that characterizes a wide range of existing attack models. Then, we show that in all strategies under the generic process, the worst-case message delay is a U-shaped function of network traffic load. This indicates that, interestingly, increasing a fair amount of traffic can in fact improve the worst-case delay performance. As a result, we demonstrate a lightweight yet promising system, transmitting adaptive camouflage traffic (TACT), to combat jamming attacks. TACT minimizes the message delay by generating extra traffic called camouflage to balance the network load at the optimum. Experiments show that TACT can decrease the probability that a message is not delivered on time in order of magnitude.