Visible to the public Biblio

Filters: Keyword is electronic control units  [Clear All Filters]
2021-09-07
Lenard, Teri, Bolboacă, Roland, Genge, Bela, Haller, Piroska.  2020.  MixCAN: Mixed and Backward-Compatible Data Authentication Scheme for Controller Area Networks. 2020 IFIP Networking Conference (Networking). :395–403.
The massive proliferation of state of the art interfaces into the automotive sector has triggered a revolution in terms of the technological ecosystem that is found in today's modern car. Accordingly, on the one hand, we find dozens of Electronic Control Units (ECUs) running several hundred MB of code, and more and more sophisticated dashboards with integrated wireless communications. On the other hand, in the same vehicle we find the underlying communication infrastructure struggling to keep up with the pace of these radical changes. This paper presents MixCAN (MIXed data authentication for Control Area Networks), an approach for mixing different message signatures (i.e., authentication tags) in order to reduce the overhead of Controller Area Network (CAN) communications. MixCAN leverages the attributes of Bloom Filters in order to ensure that an ECU can sign messages with different CAN identifiers (i.e., mix different message signatures), and that other ECUs can verify the signature for a subset of monitored CAN identifiers. Extensive experimental results based on Vectors Informatik's CANoe/CANalyzer simulation environment and the data set provided by Hacking and Countermeasure Research Lab (HCRL) confirm the validity and applicability of the developed approach. Subsequent experiments including a test bed consisting of Raspberry Pi 3 Model B+ systems equipped with CAN communication modules demonstrate the practical integration of MixCAN in real automotive systems.
2021-01-25
Marasco, E. O., Quaglia, F..  2020.  AuthentiCAN: a Protocol for Improved Security over CAN. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :533–538.
The continuous progress of electronic equipments has influenced car manufacturers, leading to the integration of the latest infotainment technologies and providing connection to external devices, such as mobile phones. Modern cars work with ECUs (Electronic Control Units) that handle user interactions and sensor data, by also sending information to actuators using simple, reliable and efficient networks with fast protocols, like CAN (Controller Area Network). This is the most used vehicular protocol, which allows interconnecting different ECUs, making them interact in a synergic manner. On the down side, there is a security risk related to the exposition of malicious ECU's frames-possibly generated by compromised devices-which can lead to the possibility to remote control all the car equipments (like brakes and others) by an attacker. We propose a solution to this problem, designing an authentication and encryption system above CAN, called AuthentiCAN. Our proposal is tailored for the evolution of CAN called CAN-FD, and avoids the possibility for an attacker to inject malicious frames that are not discarded by the destination ECUs. Also, we avoid the possibility for an attacker to learn the interactions that occur across ECUs, with the objective of maliciously replaying messages-which would lead the actuator's logic to be no longer compliant with the actual data sources. We also present a simulation study of our solution, where we provide an assessment of its overhead, e.g. in terms of reduction of the throughput of data-unit transfer over CAN-FD, caused by the added security features.
2020-07-20
Xu, Tangwei, Lu, Xiaozhen, Xiao, Liang, Tang, Yuliang, Dai, Huaiyu.  2019.  Voltage Based Authentication for Controller Area Networks with Reinforcement Learning. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–5.
Controller area networks (CANs) are vulnerable to spoofing attacks such as frame falsifying attacks, as electronic control units (ECUs) send and receive messages without any authentication and encryption. In this paper, we propose a physical authentication scheme that exploits the voltage features of the ECU signals on the CAN bus and applies reinforcement learning to choose the authentication mode such as the protection level and test threshold. This scheme enables a monitor node to optimize the authentication mode via trial-and-error without knowing the CAN bus signal model and spoofing model. Experimental results show that the proposed authentication scheme can significantly improve the authentication accuracy and response compared with a benchmark scheme.
Urien, Pascal.  2019.  Designing Attacks Against Automotive Control Area Network Bus and Electronic Control Units. 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC). :1–4.
Security is a critical issue for new car generation targeting intelligent transportation systems (ITS), involving autonomous and connected vehicles. In this work we designed a low cost CAN probe and defined analysis tools in order to build attack scenarios. We reuse some threats identified by a previous work. Future researches will address new security protocols.
2020-05-15
Kornaros, Georgios, Tomoutzoglou, Othon, Coppola, Marcello.  2018.  Hardware-Assisted Security in Electronic Control Units: Secure Automotive Communications by Utilizing One-Time-Programmable Network on Chip and Firewalls. IEEE Micro. 38:63—74.
With emerging smart automotive technologies, vehicle-to-vehicle communications, and software-dominated enhancements for enjoyable driving and advanced driver assistance systems, the complexity of providing guarantees in terms of security, trust, and privacy in a modern cyber-enabled automotive system is significantly elevated. New threat models emerge that require efficient system-level countermeasures. This article introduces synergies between on- and off-chip networking techniques to ensure secure execution environments for electronic control units. The proposed mechanisms consist of hardware firewalling and on-chip network physical isolation, whose mechanisms are combined with system-wide cryptographic techniques in automotive controller area network (CAN)-bus communications to provide authentication and confidentiality.
2018-09-05
Kang, K., Baek, Y., Lee, S., Son, S. H..  2017.  An Attack-Resilient Source Authentication Protocol in Controller Area Network. 2017 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS). :109–118.

While vehicle to everything (V2X) communication enables safety-critical automotive control systems to better support various connected services to improve safety and convenience of drivers, they also allow automotive attack surfaces to increase dynamically in modern vehicles. Many researchers as well as hackers have already demonstrated that they can take remote control of the targeted car by exploiting the vulnerabilities of in-vehicle networks such as Controller Area Networks (CANs). For assuring CAN security, we focus on how to authenticate electronic control units (ECUs) in real-time by addressing the security challenges of in-vehicle networks. In this paper, we propose a novel and lightweight authentication protocol with an attack-resilient tree algorithm, which is based on one-way hash chain. The protocol can be easily deployed in CAN by performing a firmware update of ECU. We have shown analytically that the protocol achieves a high level of security. In addition, the performance of the proposed protocol is validated on CANoe simulator for virtual ECUs and Freescale S12XF used in real vehicles. The results show that our protocol is more efficient than other authentication protocol in terms of authentication time, response time, and service delay.

Buttigieg, R., Farrugia, M., Meli, C..  2017.  Security issues in controller area networks in automobiles. 2017 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA). :93–98.
Modern vehicles may contain a considerable number of ECUs (Electronic Control Units) which are connected through various means of communication, with the CAN (Controller Area Network) protocol being the most widely used. However, several vulnerabilities such as the lack of authentication and the lack of data encryption have been pointed out by several authors, which ultimately render vehicles unsafe to their users and surroundings. Moreover, the lack of security in modern automobiles has been studied and analyzed by other researchers as well as several reports about modern car hacking have (already) been published. The contribution of this work aimed to analyze and test the level of security and how resilient is the CAN protocol by taking a BMW E90 (3-series) instrument cluster as a sample for a proof of concept study. This investigation was carried out by building and developing a rogue device using cheap commercially available components while being connected to the same CAN-Bus as a man in the middle device in order to send spoofed messages to the instrument cluster.