Biblio
The intelligent power grid is composed of a large number of industrial control equipment, and most of the industrial control equipment has security holes, which are vulnerable to malicious attacks and affect the normal operation of the power grid. By analyzing the security vulnerability of the firmware of industrial control equipment, the vulnerability can be detected in advance and the power grid's ability to resist attack can be improved. In this paper, a kind of industrial control device firmware protocol vulnerabilities associated technology, through the technology of information extraction from the mass grid device firmware device attributes and extract the industrial control system, the characteristics of the construction of industrial control system device firmware and published vulnerability information correlation, faster in the industrial control equipment safety inspection found vulnerabilities.
A process of critical transmission lines identification in presented here. The criticality is based on network flow, which is essential for power grid connectivity monitoring as well as vulnerability assessment. The proposed method can be utilized as a supplement of traditional situational awareness tool in the energy management system of the power grid control center. At first, a flow network is obtained from topological as well as functional features of the power grid. Then from the duality property of a linear programming problem, the maximum flow problem is converted to a minimum cut problem. Critical transmission lines are identified as a solution of the dual problem. An overall set of transmission lines are identified from the solution of the network flow problem. Simulation of standard IEEE test cases validates the application of the method in finding critical transmission lines of the power grid.
Traditionally, power grid vulnerability assessment methods are separated to the study of nodes vulnerability and edges vulnerability, resulting in the evaluation results are not accurate. A framework for vulnerability assessment is still required for power grid. Thus, this paper proposes a universal method for vulnerability assessment of power grid by establishing a complex network model with uniform weight of nodes and edges. The concept of virtual edge is introduced into the distinct weighted complex network model of power system, and the selection function of edge weight and virtual edge weight are constructed based on electrical and physical parameters. In addition, in order to reflect the electrical characteristics of power grids more accurately, a weighted betweenness evaluation index with transmission efficiency is defined. Finally, the method has been demonstrated on the IEEE 39 buses system, and the results prove the effectiveness of the proposed method.
The normal operation of key measurement and control equipment in power grid (KMCEPG) is of great significance for safe and stable operation of power grid. Firstly, this paper gives a systematic overview of KMCEPG. Secondly, the cyber security risks of KMCEPG on the main station / sub-station side, channel side and terminal side are analyzed and the related vulnerabilities are discovered. Thirdly, according to the risk analysis results, the attack process construction technology of KMCEPG is proposed, which provides the test process and attack ideas for the subsequent KMCEPG-related attack penetration. Fourthly, the simulation penetration test environment is built, and a series of attack tests are carried out on the terminal key control equipment by using the attack flow construction technology proposed in this paper. The correctness of the risk analysis and the effectiveness of the attack process construction technology are verified. Finally, the attack test results are analyzed, and the attack test cases of terminal critical control devices are constructed, which provide the basis for the subsequent attack test. The attack flow construction technology and attack test cases proposed in this paper improve the network security defense capability of key equipment of power grid, ensure the safe and stable operation of power grid, and have strong engineering application value.
As a modern power transmission network, smart grid connects plenty of terminal devices. However, along with the growth of devices are the security threats. Different from the previous separated environment, an adversary nowadays can destroy the power system by attacking these devices. Therefore, it's critical to ensure the security and safety of terminal devices. To achieve this goal, detecting the pre-existing vulnerabilities of the device program and enhance the terminal security, are of great importance and necessity. In this paper, we propose a novel approach that detects existing buffer-overflow vulnerabilities of terminal devices via automatic static analysis (ASA). We utilize the static analysis to extract the device program information and build corresponding program models. By further matching the generated program model with pre-defined vulnerability patterns, we achieve vulnerability detection and error reporting. The evaluation results demonstrate that our method can effectively detect buffer-overflow vulnerabilities of smart terminals with a high accuracy and a low false positive rate.
The risk of large-scale blackouts and cascading failures in power grids can be due to vulnerable transmission lines and lack of proper remediation techniques after recognizing the first failure. In this paper, we assess the vulnerability of a system using fault chain theory and a power flow-based method, and calculate the probability of large-scale blackout. Further, we consider a Remedial Action Scheme (RAS) to reduce the vulnerability of the system and to harden the critical components against intentional attacks. To identify the most critical lines more efficiently, a new vulnerability index is presented. The effectiveness of the new index and the impact of the applied RAS is illustrated on the IEEE 14-bus test system.
Deep packet inspection (DPI) is a critical component to prevent intrusion detection. This requires a detailed analysis of each network packet header and body. Although this is often done on dedicated high-power servers in most networked systems, mobile systems could potentially be vulnerable to attack if utilized on an unprotected network. In this case, having DPI hardware on the mobile system would be highly beneficial. Unfortunately, DPI hardware is generally area and power consuming, making its implementation difficult in mobile systems. We developed a memristor crossbar-based approach, inspired by memristor crossbar neuromorphic circuits, for a low-power, low-area, and high-throughput DPI system that examines both the header and body of a packet. Two key types of circuits are presented: static pattern matching and regular expression circuits. This system is able to reduce execution time and power consumption due to its high-density grid and massive parallelism. Independent searches are performed using low-power memristor crossbar arrays giving rise to a throughput of 160Gbps with no loss in the classification accuracy.
Electromagnetic (EM) analysis is to reveal the secret information by analyzing the EM emission from a cryptographic device. EM analysis (EMA) attack is emerging as a serious threat to hardware security. It has been noted that the on-chip power grid (PG) has a security implication on EMA attack by affecting the fluctuations of supply current. However, there is little study on exploiting this intrinsic property as an active countermeasure against EMA. In this paper, we investigate the effect of PG on EM emission and propose an active countermeasure against EMA, i.e. EM Equalizer (EME). By adjusting the PG impedance, the current waveform can be flattened, equalizing the EM profile. Therefore, the correlation between secret data and EM emission is significantly reduced. As a first attempt to the co-optimization for power and EM security, we extend the EME method by fixing the vulnerability of power analysis. To verify the EME method, several cryptographic designs are implemented. The measurement to disclose (MTD) is improved by 1138x with area and power overheads of 0.62% and 1.36%, respectively.
With a growing demand of concurrent software to exploit multi-core hardware capability, concurrency vulnerabilities have become an inevitable threat to the security of today's IT industry. Existing concurrent program detection schemes focus mainly on detecting concurrency errors such as data races, atomicity violation, etc., with little attention paid to detect concurrency vulnerabilities that may be exploited to infringe security. In this paper, we propose a heuristic framework that combines both static analysis and fuzz testing to detect targeted concurrency vulnerabilities such as concurrency buffer overflow, double free, and use-after-free. The static analysis locates sensitive concurrent operations in a concurrent program, categorizes each finding into a potential type of concurrency vulnerability, and determines the execution order of the sensitive operations in each finding that would trigger the suspected concurrency vulnerability. The results are then plugged into the fuzzer with the execution order fixed by the static analysis in order to trigger the suspected concurrency vulnerabilities. In order to introduce more variance which increases possibility that the concurrency errors can be triggered, we also propose manipulation of thread scheduling priority to enable a fuzzer such as AFL to effectively explore thread interleavings in testing a concurrent program. To the best of our knowledge, this is the first fuzzer that is capable of effectively exploring concurrency errors. In evaluating the proposed heuristic framework with a benchmark suit of six real-world concurrent C programs, the framework detected two concurrency vulnerabilities for the proposed concurrency vulnerability detection, both being confirmed to be true positives, and produced three new crashes for the proposed interleaving exploring fuzzer that existing fuzzers could not produce. These results demonstrate the power and effectiveness of the proposed heuristic framework in detecting concurrency errors and vulnerabilities.
The blockchain technology has emerged as an attractive solution to address performance and security issues in distributed systems. Blockchain's public and distributed peer-to-peer ledger capability benefits cloud computing services which require functions such as, assured data provenance, auditing, management of digital assets, and distributed consensus. Blockchain's underlying consensus mechanism allows to build a tamper-proof environment, where transactions on any digital assets are verified by set of authentic participants or miners. With use of strong cryptographic methods, blocks of transactions are chained together to enable immutability on the records. However, achieving consensus demands computational power from the miners in exchange of handsome reward. Therefore, greedy miners always try to exploit the system by augmenting their mining power. In this paper, we first discuss blockchain's capability in providing assured data provenance in cloud and present vulnerabilities in blockchain cloud. We model the block withholding (BWH) attack in a blockchain cloud considering distinct pool reward mechanisms. BWH attack provides rogue miner ample resources in the blockchain cloud for disrupting honest miners' mining efforts, which was verified through simulations.
Recent years, the issue of cyber security has become ever more prevalent in the analysis and design of electrical cyber-physical systems (ECPSs). In this paper, we present the TrueTime Network Library for modeling the framework of ECPSs and focuses on the vulnerability analysis of ECPSs under DoS attacks. Model predictive control algorithm is used to control the ECPS under disturbance or attacks. The performance of decentralized and distributed control strategies are compared on the simulation platform. It has been proved that DoS attacks happen at dada collecting sensors or control instructions actuators will influence the system differently.
With the integration of computing, communication, and physical processes, the modern power grid is becoming a large and complex cyber physical power system (CPPS). This trend is intended to modernize and improve the efficiency of the power grid, yet it makes the CPPS vulnerable to potential cascading failures caused by cyber-attacks, e.g., the attacks that are originated by the cyber network of CPPS. To prevent these risks, it is essential to analyze how cyber-attacks can be conducted against the CPPS and how they can affect the power systems. In light of that General Packet Radio Service (GPRS) has been widely used in CPPS, this paper provides a case study by examining possible cyber-attacks against the cyber-physical power systems with GPRS-based SCADA system. We analyze the vulnerabilities of GPRS-based SCADA systems and focus on DoS attacks and message spoofing attacks. Furthermore, we show the consequence of these attacks against power systems by a simulation using the IEEE 9-node system, and the results show the validity of cascading failures propagated through the systems under our proposed attacks.
Power grid infrastructures have been exposed to several terrorists and cyber attacks from different perspectives and have resulted in critical system failures. Among different attack strategies, simultaneous attack is feasible for the attacker if enough resources are available at the moment. In this paper, vulnerability analysis for simultaneous attack is investigated, using a modified cascading failure simulator with reduced calculation time than the existing methods. A new damage measurement matrix is proposed with the loss of generation power and time to reach the steady-state condition. The combination of attacks that can result in a total blackout in the shortest time are considered as the strongest simultaneous attack for the system from attacker's viewpoint. The proposed approach can be used for general power system test cases. In this paper, we conducted the experiments on W&W 6 bus system and IEEE 30 bus system for demonstration of the result. The modified simulator can automatically find the strongest attack combinations for reaching maximum damage in terms of generation power loss and time to reach black-out.