Visible to the public Biblio

Filters: Keyword is power grid vulnerability analysis  [Clear All Filters]
2018-05-24
Tosh, D. K., Shetty, S., Liang, X., Kamhoua, C. A., Kwiat, K. A., Njilla, L..  2017.  Security Implications of Blockchain Cloud with Analysis of Block Withholding Attack. 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID). :458–467.

The blockchain technology has emerged as an attractive solution to address performance and security issues in distributed systems. Blockchain's public and distributed peer-to-peer ledger capability benefits cloud computing services which require functions such as, assured data provenance, auditing, management of digital assets, and distributed consensus. Blockchain's underlying consensus mechanism allows to build a tamper-proof environment, where transactions on any digital assets are verified by set of authentic participants or miners. With use of strong cryptographic methods, blocks of transactions are chained together to enable immutability on the records. However, achieving consensus demands computational power from the miners in exchange of handsome reward. Therefore, greedy miners always try to exploit the system by augmenting their mining power. In this paper, we first discuss blockchain's capability in providing assured data provenance in cloud and present vulnerabilities in blockchain cloud. We model the block withholding (BWH) attack in a blockchain cloud considering distinct pool reward mechanisms. BWH attack provides rogue miner ample resources in the blockchain cloud for disrupting honest miners' mining efforts, which was verified through simulations.

Ding, P., Wang, Y., Yan, G., Li, W..  2017.  DoS Attacks in Electrical Cyber-Physical Systems: A Case Study Using TrueTime Simulation Tool. 2017 Chinese Automation Congress (CAC). :6392–6396.

Recent years, the issue of cyber security has become ever more prevalent in the analysis and design of electrical cyber-physical systems (ECPSs). In this paper, we present the TrueTime Network Library for modeling the framework of ECPSs and focuses on the vulnerability analysis of ECPSs under DoS attacks. Model predictive control algorithm is used to control the ECPS under disturbance or attacks. The performance of decentralized and distributed control strategies are compared on the simulation platform. It has been proved that DoS attacks happen at dada collecting sensors or control instructions actuators will influence the system differently.

Zhang, T., Wang, Y., Liang, X., Zhuang, Z., Xu, W..  2017.  Cyber Attacks in Cyber-Physical Power Systems: A Case Study with GPRS-Based SCADA Systems. 2017 29th Chinese Control And Decision Conference (CCDC). :6847–6852.

With the integration of computing, communication, and physical processes, the modern power grid is becoming a large and complex cyber physical power system (CPPS). This trend is intended to modernize and improve the efficiency of the power grid, yet it makes the CPPS vulnerable to potential cascading failures caused by cyber-attacks, e.g., the attacks that are originated by the cyber network of CPPS. To prevent these risks, it is essential to analyze how cyber-attacks can be conducted against the CPPS and how they can affect the power systems. In light of that General Packet Radio Service (GPRS) has been widely used in CPPS, this paper provides a case study by examining possible cyber-attacks against the cyber-physical power systems with GPRS-based SCADA system. We analyze the vulnerabilities of GPRS-based SCADA systems and focus on DoS attacks and message spoofing attacks. Furthermore, we show the consequence of these attacks against power systems by a simulation using the IEEE 9-node system, and the results show the validity of cascading failures propagated through the systems under our proposed attacks.

Paul, S., Ni, Z..  2017.  Vulnerability Analysis for Simultaneous Attack in Smart Grid Security. 2017 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.

Power grid infrastructures have been exposed to several terrorists and cyber attacks from different perspectives and have resulted in critical system failures. Among different attack strategies, simultaneous attack is feasible for the attacker if enough resources are available at the moment. In this paper, vulnerability analysis for simultaneous attack is investigated, using a modified cascading failure simulator with reduced calculation time than the existing methods. A new damage measurement matrix is proposed with the loss of generation power and time to reach the steady-state condition. The combination of attacks that can result in a total blackout in the shortest time are considered as the strongest simultaneous attack for the system from attacker's viewpoint. The proposed approach can be used for general power system test cases. In this paper, we conducted the experiments on W&W 6 bus system and IEEE 30 bus system for demonstration of the result. The modified simulator can automatically find the strongest attack combinations for reaching maximum damage in terms of generation power loss and time to reach black-out.

Kwon, Y., Kim, H. K., Koumadi, K. M., Lim, Y. H., Lim, J. I..  2017.  Automated Vulnerability Analysis Technique for Smart Grid Infrastructure. 2017 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.

A smart grid is a fully automated power electricity network, which operates, protects and controls all its physical environments of power electricity infrastructure being able to supply energy in an efficient and reliable way. As the importance of cyber-physical system (CPS) security is growing, various vulnerability analysis methodologies for general systems have been suggested, whereas there has been few practical research targeting the smart grid infrastructure. In this paper, we highlight the significance of security vulnerability analysis in the smart grid environment. Then we introduce various automated vulnerability analysis techniques from executable files. In our approach, we propose a novel binary-based vulnerability discovery method for AMI and EV charging system to automatically extract security-related features from the embedded software. Finally, we present the test result of vulnerability discovery applied for AMI and EV charging system in Korean smart grid environment.

Huang, P., Wang, Y., Yan, G..  2017.  Vulnerability Analysis of Electrical Cyber Physical Systems Using a Simulation Platform. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. :489–494.

This paper considers a framework of electrical cyber-physical systems (ECPSs) in which each bus and branch in a power grid is equipped with a controller and a sensor. By means of measuring the damages of cyber attacks in terms of cutting off transmission lines, three solution approaches are proposed to assess and deal with the damages caused by faults or cyber attacks. Splitting incident is treated as a special situation in cascading failure propagation. A new simulation platform is built for simulating the protection procedure of ECPSs under faults. The vulnerability of ECPSs under faults is analyzed by experimental results based on IEEE 39-bus system.

Chen, L., Yue, D., Dou, C., Ge, H., Lu, J., Yang, X..  2017.  Cascading Failure Initially from Power Grid in Interdependent Networks. 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2). :1–5.

The previous consideration of power grid focuses on the power system itself, however, the recent work is aiming at both power grid and communication network, this coupling networks are firstly called as interdependent networks. Prior study on modeling interdependent networks always extracts main features from real networks, the model of network A and network B are completely symmetrical, both degree distribution in intranetwork and support pattern in inter-network, but in reality this circumstance is hard to attain. In this paper, we deliberately set both networks with same topology in order to specialized research the support pattern between networks. In terms of initial failure from power grid or communication network, we find the remaining survival fraction is greatly disparate, and the failure initially from power grid is more harmful than failure initially from communication network, which all show the vulnerability of interdependency and meantime guide us to pay more attention to the protection measures for power grid.

Dey, A. K., Gel, Y. R., Poor, H. V..  2017.  Motif-Based Analysis of Power Grid Robustness under Attacks. 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP). :1015–1019.

Network motifs are often called the building blocks of networks. Analysis of motifs is found to be an indispensable tool for understanding local network structure, in contrast to measures based on node degree distribution and its functions that primarily address a global network topology. As a result, networks that are similar in terms of global topological properties may differ noticeably at a local level. In the context of power grids, this phenomenon of the impact of local structure has been recently documented in fragility analysis and power system classification. At the same time, most studies of power system networks still tend to focus on global topo-logical measures of power grids, often failing to unveil hidden mechanisms behind vulnerability of real power systems and their dynamic response to malfunctions. In this paper a pilot study of motif-based analysis of power grid robustness under various types of intentional attacks is presented, with the goal of shedding light on local dynamics and vulnerability of power systems.

2018-05-01
Paudel, Sarita, Smith, Paul, Zseby, Tanja.  2017.  Attack Models for Advanced Persistent Threats in Smart Grid Wide Area Monitoring. Proceedings of the 2Nd Workshop on Cyber-Physical Security and Resilience in Smart Grids. :61–66.

Wide Area Monitoring Systems (WAMSs) provide an essential building block for Smart Grid supervision and control. Distributed Phasor Measurement Units (PMUs) allow accurate clock-synchronized measurements of voltage and current phasors (amplitudes, phase angles) and frequencies. The sensor data from PMUs provide situational awareness in the grid, and are used as input for control decisions. A modification of sensor data can severely impact grid stability, overall power supply, and physical devices. Since power grids are critical infrastructures, WAMSs are tempting targets for all kinds of attackers, including well-organized and motivated adversaries such as terrorist groups or adversarial nation states. Such groups possess sufficient resources to launch sophisticated attacks. In this paper, we provide an in-depth analysis of attack possibilities on WAMSs. We model the dependencies and building blocks of Advanced Persistent Threats (APTs) on WAMSs using attack trees. We consider the whole WAMS infrastructure, including aggregation and data collection points, such as Phasor Data Concentrators (PDCs), classical IT components, and clock synchronization. Since Smart Grids are cyber-physical systems, we consider physical perturbations, in addition to cyber attacks in our models. The models provide valuable information about the chain of cyber or physical attack steps that can be combined to build a sophisticated attack for reaching a higher goal. They assist in the assessment of physical and cyber vulnerabilities, and provide strategic guidance for the deployment of suitable countermeasures.

2018-04-04
Ran, L., Lu, L., Lin, H., Han, M., Zhao, D., Xiang, J., Yu, H., Ma, X..  2017.  An Experimental Study of Four Methods for Homology Analysis of Firmware Vulnerability. 2017 International Conference on Dependable Systems and Their Applications (DSA). :42–50.

In the production process of embedded device, due to the frequent reuse of third-party libraries or development kits, there are large number of same vulnerabilities that appear in more than one firmware. Homology analysis is often used in detecting this kind of vulnerabilities caused by code reuse or third-party reuse and in the homology analysis, the widely used methods are mainly Binary difference analysis, Normalized compression distance, String feature matching and Fuzz hash. But when we use these methods for homology analysis, we found that the detection result is not ideal and there is a high false positive rate. Focusing on this problem, we analyzed the application scenarios of these four methods and their limitations by combining different methods and different types of files and the experiments show that the combination of methods and files have a better performance in homology analysis.

2018-02-06
Gavgani, M. H., Eftekharnejad, S..  2017.  A Graph Model for Enhancing Situational Awareness in Power Systems. 2017 19th International Conference on Intelligent System Application to Power Systems (ISAP). :1–6.

As societies are becoming more dependent on the power grids, the security issues and blackout threats are more emphasized. This paper proposes a new graph model for online visualization and assessment of power grid security. The proposed model integrates topology and power flow information to estimate and visualize interdependencies between the lines in the form of line dependency graph (LDG) and immediate threats graph (ITG). These models enable the system operator to predict the impact of line outage and identify the most vulnerable and critical links in the power system. Line Vulnerability Index (LVI) and Line Criticality Index (LCI) are introduced as two indices extracted from LDG to aid the operator in decision making and contingency selection. This package can be useful in enhancing situational awareness in power grid operation by visualization and estimation of system threats. The proposed approach is tested for security analysis of IEEE 30-bus and IEEE 118-bus systems and the results are discussed.

2017-11-27
Ashok, A., Krishnaswamy, S., Govindarasu, M..  2016.  PowerCyber: A remotely accessible testbed for Cyber Physical security of the Smart Grid. 2016 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.

Cyber Physical Systems (CPS) security testbeds serve as a platform for evaluating and validating novel CPS security tools and technologies, accelerating the transition of state-of-the-art research to industrial practice. The engineering of CPS security testbeds requires significant investments in money, time and modeling efforts to provide a scalable, high-fidelity, real-time attack-defense platform. Therefore, there is a strong need in academia and industry to create remotely accessible testbeds that support a range of use-cases pertaining to CPS security of the grid, including vulnerability assessments, impact analysis, product testing, attack-defense exercises, and operator training. This paper describes the implementation architecture, and capabilities of a remote access and experimental orchestration framework developed for the PowerCyber CPS security testbed at Iowa State University (ISU). The paper then describes several engineering challenges in the development of such remotely accessible testbeds for Smart Grid CPS security experimentation. Finally, the paper provides a brief case study with some screenshots showing a particular use case scenario on the remote access framework.

Pandey, R. K., Misra, M..  2016.  Cyber security threats \#x2014; Smart grid infrastructure. 2016 National Power Systems Conference (NPSC). :1–6.

Smart grid is an evolving new power system framework with ICT driven power equipment massively layered structure. The new generation sensors, smart meters and electronic devices are integral components of smart grid. However, the upcoming deployment of smart devices at different layers followed by their integration with communication networks may introduce cyber threats. The interdependencies of various subsystems functioning in the smart grid, if affected by cyber-attack, may be vulnerable and greatly reduce efficiency and reliability due to any one of the device not responding in real time frame. The cyber security vulnerabilities become even more evident due to the existing superannuated cyber infrastructure. This paper presents a critical review on expected cyber security threats in complex environment and addresses the grave concern of a secure cyber infrastructure and related developments. An extensive review on the cyber security objectives and requirements along with the risk evaluation process has been undertaken. The paper analyses confidentiality and privacy issues of entire components of smart power system. A critical evaluation on upcoming challenges with innovative research concerns is highlighted to achieve a roadmap of an immune smart grid infrastructure. This will further facilitate R&d; associated developments.

Biswas, S., Sarwat, A..  2016.  Vulnerabilities in two-area Automatic Generation Control systems under cyberattack. 2016 Resilience Week (RWS). :40–45.

The power grid is a prime target of cyber criminals and warrants special attention as it forms the backbone of major infrastructures that drive the nation's defense and economy. Developing security measures for the power grid is challenging since it is physically dispersed and interacts dynamically with associated cyber infrastructures that control its operation. This paper presents a mathematical framework to investigate stability of two area systems due to data attacks on Automatic Generation Control (AGC) system. Analytical and simulation results are presented to identify attack levels that could drive the AGC system to potentially become unstable.

Ghanbari, R., Jalili, M., Yu, X..  2016.  Analysis of cascaded failures in power networks using maximum flow based complex network approach. IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society. :4928–4932.

Power networks can be modeled as networked structures with nodes representing the bus bars (connected to generator, loads and transformers) and links representing the transmission lines. In this manuscript we study cascaded failures in power networks. As network structures we consider IEEE 118 bus network and a random spatial model network with similar properties to IEEE 118 bus network. A maximum flow based model is used to find the central edges. We study cascaded failures triggered by both random and targeted attacks to the edges. In the targeted attack the edge with the maximum centrality value is disconnected from the network. A number of metrics including the size of the largest connected component, the number of failed edges, the average maximum flow and the global efficiency are studied as a function of capacity parameter (edge critical load is proportional to its capacity parameter and nominal centrality value). For each case we identify the critical capacity parameter by which the network shows resilient behavior against failures. The experiments show that one should further protect the network for a targeted attack as compared to a random failure.

Parate, M., Tajane, S., Indi, B..  2016.  Assessment of System Vulnerability for Smart Grid Applications. 2016 IEEE International Conference on Engineering and Technology (ICETECH). :1083–1088.

The smart grid is an electrical grid that has a duplex communication. This communication is between the utility and the consumer. Digital system, automation system, computers and control are the various systems of Smart Grid. It finds applications in a wide variety of systems. Some of its applications have been designed to reduce the risk of power system blackout. Dynamic vulnerability assessment is done to identify, quantify, and prioritize the vulnerabilities in a system. This paper presents a novel approach for classifying the data into one of the two classes called vulnerable or non-vulnerable by carrying out Dynamic Vulnerability Assessment (DVA) based on some data mining techniques such as Multichannel Singular Spectrum Analysis (MSSA), and Principal Component Analysis (PCA), and a machine learning tool such as Support Vector Machine Classifier (SVM-C) with learning algorithms that can analyze data. The developed methodology is tested in the IEEE 57 bus, where the cause of vulnerability is transient instability. The results show that data mining tools can effectively analyze the patterns of the electric signals, and SVM-C can use those patterns for analyzing the system data as vulnerable or non-vulnerable and determines System Vulnerability Status.

Chu, Z., Zhang, J., Kosut, O., Sankar, L..  2016.  Evaluating power system vulnerability to false data injection attacks via scalable optimization. 2016 IEEE International Conference on Smart Grid Communications (SmartGridComm). :260–265.

Physical consequences to power systems of false data injection cyber-attacks are considered. Prior work has shown that the worst-case consequences of such an attack can be determined using a bi-level optimization problem, wherein an attack is chosen to maximize the physical power flow on a target line subsequent to re-dispatch. This problem can be solved as a mixed-integer linear program, but it is difficult to scale to large systems due to numerical challenges. Three new computationally efficient algorithms to solve this problem are presented. These algorithms provide lower and upper bounds on the system vulnerability measured as the maximum power flow subsequent to an attack. Using these techniques, vulnerability assessments are conducted for IEEE 118-bus system and Polish system with 2383 buses.

Pan, K., Teixeira, A. M. H., Cvetkovic, M., Palensky, P..  2016.  Combined data integrity and availability attacks on state estimation in cyber-physical power grids. 2016 IEEE International Conference on Smart Grid Communications (SmartGridComm). :271–277.

This paper introduces combined data integrity and availability attacks to expand the attack scenarios against power system state estimation. The goal of the adversary, who uses the combined attack, is to perturb the state estimates while remaining hidden from the observer. We propose security metrics that quantify vulnerability of power grids to combined data attacks under single and multi-path routing communication models. In order to evaluate the proposed security metrics, we formulate them as mixed integer linear programming (MILP) problems. The relation between the security metrics of combined data attacks and pure data integrity attacks is analyzed, based on which we show that, when data availability and data integrity attacks have the same cost, the two metrics coincide. When data availability attacks have a lower cost than data integrity attacks, we show that a combined data attack could be executed with less attack resources compared to pure data integrity attacks. Furthermore, it is shown that combined data attacks would bypass integrity-focused mitigation schemes. These conclusions are supported by the results obtained on a power system model with and without a communication model with single or multi-path routing.

Yanbing, J., Ruiqiong, L., Shanxi, H. X., Peng, W..  2016.  Risk assessment of cascading failures in power grid based on complex network theory. 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV). :1–6.

Cascading failure is an intrinsic threat of power grid to cause enormous cost of society, and it is very challenging to be analyzed. The risk of cascading failure depends both on its probability and the severity of consequence. It is impossible to analyze all of the intrinsic attacks, only the critical and high probability initial events should be found to estimate the risk of cascading failure efficiently. To recognize the critical and high probability events, a cascading failure analysis model for power transmission grid is established based on complex network theory (CNT) in this paper. The risk coefficient of transmission line considering the betweenness, load rate and changeable outage probability is proposed to determine the initial events of power grid. The development tendency of cascading failure is determined by the network topology, the power flow and boundary conditions. The indicators of expected percentage of load loss and line cut are used to estimate the risk of cascading failure caused by the given initial malfunction of power grid. Simulation results from the IEEE RTS-79 test system show that the risk of cascading failure has close relations with the risk coefficient of transmission lines. The value of risk coefficient could be useful to make vulnerability assessment and to design specific action to reduce the topological weakness and the risk of cascading failure of power grid.

Sayyadipour, S., Latify, M. A., Yousefi, G. R..  2016.  Vulnerability analysis of power systems during the scheduled maintenance of network facilities. 2016 Smart Grids Conference (SGC). :1–4.

This paper proposes a practical time-phased model to analyze the vulnerability of power systems over a time horizon, in which the scheduled maintenance of network facilities is considered. This model is deemed as an efficient tool that could be used by system operators to assess whether how their systems become vulnerable giving a set of scheduled facility outages. The final model is presented as a single level Mixed-Integer Linear Programming (MILP) problem solvable with commercially available software. Results attained based on the well-known IEEE 24-Bus Reliability Test System (RTS) appreciate the applicability of the model and highlight the necessity of considering the scheduled facility outages in assessing the vulnerability of a power system.

Weerathunga, P. E., Cioraca, A..  2016.  The importance of testing Smart Grid IEDs against security vulnerabilities. 2016 69th Annual Conference for Protective Relay Engineers (CPRE). :1–21.

As the Smart Grid becomes highly interconnected, the power protection, control, and monitoring functions of the grid are increasingly relying on the communications infrastructure, which has seen rapid growth. At the same time concerns regarding cyber threats have attracted significant attention towards the security of power systems. A properly designed security attack against the power grid can cause catastrophic damages to equipment and create large scale power outages. The smart grid consists of critical IEDs, which are considered high priority targets for malicious security attacks. For this reason it is very important to design the IEDs from the beginning with cyber security in mind, starting with the selection of hardware and operating systems, so that all facets of security are addressed and the product is robust and can stand attacks. Fact is that the subject of cyber security is vast and it covers many aspects. This paper focuses mainly on one of these aspects, namely the aspect of IED firmware system testing from the security point of view. The paper discusses practical aspects of IED security testing, and introduces the reader to types of vulnerability exploitations on the IED communication stack and SCADA applications, practical aspects of security testing, the importance of early vulnerability detection and ways in which the security testing helps towards regulatory standards compliance, such as NERC-CIP. Finally, based on the results from the simulated attacks, the paper discusses the importance of good security practices in design and coding, so that the potential to introduce vulnerabilities is kept to a minimum. Designing with security in mind also includes good security practices, both in design and coding, and adequate policies for the software development process. Critical software development milestones must be established, such as design and test documentation review, code review, unit, integration and system testing.

2015-05-01
Xuezhong Guan, Jinlong Liu, Zhe Gao, Di Yu, Miao Cai.  2014.  Power grids vulnerability analysis based on combination of degree and betweenness. Control and Decision Conference (2014 CCDC), The 26th Chinese. :4829-4833.

This paper proposes an analysis method of power grids vulnerability based on complex networks. The method effectively combines the degree and betweenness of nodes or lines into a new index. Through combination of the two indexes, the new index can help to analyze the vulnerability of power grids. Attacking the line of the new index can obtain a smaller size of the largest cluster and global efficiency than that of the pure degree index or betweenness index. Finally, the fault simulation results of IEEE 118 bus system show that the new index can reveal the vulnerability of power grids more effectively.