Visible to the public Biblio

Filters: Keyword is visible light communications  [Clear All Filters]
Ge, Hong, Dai, Jianxin, Huang, Bo, Wang, Jin-Yuan.  2019.  Secrecy Rate Analysis for Visible Light Communications Using Spatial Modulation. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1241–1248.
This paper mainly investigates the physical layer security for visible light communication (VLC) based on spatial modulation (SM). The indoor VLC system includes multiple transmitters, a legitimate receiver and an eavesdropper. In the system, we consider two constraints of the input signal: non-negative and dimmable average optical intensity constraints. According to the principle of information theory and the spatial modulation scheme of uniform selection (US), the upper and the lower bounds on the secrecy rate for SM based VLC are derived, respectively. Numerical results show that the performance gap between the upper and lower bounds of the secrecy rate is small and relatively close, which indicates that the derived secrecy rate bounds can be used to evaluate the system performance. Moreover, when the number of transmitters is set to be one, the spatial modulation disappears, and the secrecy rate bounds in this paper are consistent with the existing results. To further improve the secrecy performance, a channel adaptive selection (CAS) scheme is proposed for selecting the active transmitter. Numerical result indicates that the CAS scheme has better performance than the US scheme.
Tian, Dinghui, Zhang, Wensheng, Sun, Jian, Wang, Cheng-Xiang.  2019.  Physical-Layer Security of Visible Light Communications with Jamming. 2019 IEEE/CIC International Conference on Communications in China (ICCC). :512–517.
Visible light communication (VLC) is a burgeoning field in wireless communications as it considers illumination and communication simultaneously. The broadcast nature of VLC makes it necessary to consider the security of underlying transmissions. A physical-layer security (PLS) scheme by introducing jamming LEDs is considered in this paper. The secrecy rate of an indoor VLC system with multiple LEDs, one legitimate receiver, and multiple eavesdroppers is investigated. Three distributions of input signal are assumed, i.e., truncated generalized normal distribution (TGN), uniform distribution, and exponential distribution. The results show that jamming can improve the secrecy performance efficiently. This paper also demonstrates that when the numbers of LEDs transmitting information-bearing signal and jamming signal are equal, the average secrecy rate can be maximized.
Inn, Arba’iah, Hassan, Rosilah, Mohd Aman, Azana Hafizah, Abdul Latiff, Liza.  2019.  Framework for Handover process using Visible Light Communications in 5G. 2019 Symposium on Future Telecommunication Technologies (SOFTT). 1:1–4.
Internet of Things (IoT) revolution in 5th Generation (5G) will dynamically support all user, devices and customer worldwide where these devices, mechanical and digital machines will be connected and are able to communicate and transfer data over the network. In industries, the evolution of these technologies, known as Industrial IoT (IIoT) will enable machines to be connected and communicate where else, Internet of Everything (IoE) makes the connection more relevant between all smart devices, machines and also people with a huge data, high speed and high security. The growth of these technologies has made Radio Frequency (RF) spectrum resources for wireless communication to be more saturated. In order to solve this problem, new wireless communication technologies are proposed to meet the demand and also to enhance the performance of the system and overcome the existing bandwidth limitations. Studies done shows that Light-Fidelity (Li-Fi), based on Visible Light Communications (VLC) is one of the most promising technology in future which is based on optical wireless communication. Initial study on the Li-Fi concept has focuses on achieving speed, bi-directional transmission concept and supports multiuser access. In this paper we propose a frame work focuses on the handover process for indoor environment by using the steerable Access Point (AP) and compare the output result with fix Access Point.
Wang, J., Lin, S., Liu, C., Wang, J., Zhu, B., Jiang, Y..  2018.  Secrecy Capacity of Indoor Visible Light Communication Channels. 2018 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
In the indoor scenario, visible light communications (VLC) is regarded as one of the most promising candidates for future wireless communications. Recently, the physical layer security for indoor VLC has drawn considerable attention. In this paper, the secrecy capacity of indoor VLC is analyzed. Initially, an VLC system with a transmitter, a legitimate receiver, and an eavesdropper is established. In the system, the nonnegativity, the peak optical intensity constraint and the dimmable average optical intensity constraint are considered. Based on the principle of information theory, the closed-form expressions of the upper and the lower bounds on the secrecy capacity are derived, respectively. Numerical results show that the upper and the lower bounds on secrecy capacity are very tight, which verify the accuracy of the derived closed-form expressions.
Cabaj, Krzysztof, Gregorczyk, Marcin, Mazurczyk, Wojciech, Nowakowski, Piotr, \textbackslashtextbackslash.Zórawski, Piotr.  2018.  SDN-based Mitigation of Scanning Attacks for the 5G Internet of Radio Light System. Proceedings of the 13th International Conference on Availability, Reliability and Security. :49:1–49:10.
Currently 5G communication networks are gaining on importance among industry, academia, and governments worldwide as they are envisioned to offer wide range of high-quality services and unfaltering user experiences. However, certain security, privacy and trust challenges need to be addressed in order for the 5G networks to be widely welcomed and accepted. That is why in this paper, we take a step towards these requirements and we introduce a dedicated SDN-based integrated security framework for the Internet of Radio Light (IoRL) system that is following 5G architecture design. In particular, we present how TCP SYN-based scanning activities which typically comprise the first phase of the attack chain can be detected and mitigated using such an approach. Enclosed experimental results prove that the proposed security framework has potential to become an effective defensive solution.
Cosmas, J., Kapovits, Á.  2017.  Internet of Radio Light: Unleashing Innovation in Building Networks. 2017 Global Wireless Summit (GWS). :257–261.

Wireless networks in buildings suffer from congestion, interference, security and safety concerns, restricted propagation and poor in-door location accuracy. The Internet of Radio-Light (IoRL) project develops a safer, more secure, customizable and intelligent building network that reliably delivers increased throughput (greater than lOGbps) from access points pervasively located within buildings, whilst minimizing interference and harmful EM exposure and providing location accuracy of less than 10 cm. It thereby shows how to solve the problem of broadband wireless access in buildings and promotes the establishment of a global standard in ITU.

Yildiz, O., Gulbahar, B..  2018.  FoVLC: Foveation Based Data Hiding in Display Transmitters for Visible Light Communications. 2018 14th International Wireless Communications Mobile Computing Conference (IWCMC). :629–635.

Visible light communications is an emerging architecture with unlicensed and huge bandwidth resources, security, and experimental implementations and standardization efforts. Display based transmitter and camera based receiver architectures are alternatives for device-to-device (D2D) and home area networking (HAN) systems by utilizing widely available TV, tablet and mobile phone screens as transmitters while commercially available cameras as receivers. Current architectures utilizing data hiding and unobtrusive steganography methods promise data transmission without user distraction on the screen. however, current architectures have challenges with the limited capability of data hiding in translucency or color shift based methods of hiding by uniformly distributing modulation throughout the screen and keeping eye discomfort at an acceptable level. In this article, foveation property of human visual system is utilized to define a novel modulation method denoted by FoVLC which adaptively improves data hiding capability throughout the screen based on the current eye focus point of viewer. Theoretical modeling of modulation and demodulation mechanisms hiding data in color shifts of pixel blocks is provided while experiments are performed for both FoVLC method and uniform data hiding denoted as conventional method. Experimental tests for the simple design as a proof of concept decreases average bit error rate (BER) to approximately half of the value obtained with the conventional method without user distraction while promising future efforts for optimizing block sizes and utilizing error correction codes.