Visible to the public Biblio

Filters: Keyword is WSN  [Clear All Filters]
Pandey, Pragya, Kaur, Inderjeet.  2020.  Improved MODLEACH with Effective Energy Utilization Technique for WSN. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :987—992.
Wireless sensor network (WSNs) formed from an enormous number of sensor hub with the capacity to detect and process information in the physical world in a convenient way. The sensor nodes contain a battery imperative, which point of confinement the system lifetime. Because of vitality limitations, the arrangement of WSNs will required development methods to keep up the system lifetime. The vitality productive steering is the need of the innovative WSN systems to build the process time of system. The WSN system is for the most part battery worked which should be ration as conceivable as to cause system to continue longer and more. WSN has developed as a significant figuring stage in the ongoing couple of years. WSN comprises of countless sensor points, which are worked by a little battery. The vitality of the battery worked nodes is the defenseless asset of the WSN, which is exhausted at a high rate when data is transmitted, because transmission vitality is subject to the separation of transmission. Sensor nodes can be sent in the cruel condition. When they are conveyed, it ends up difficult to supplant or energize its battery. Therefore, the battery intensity of sensor hub ought to be utilized proficiently. Many steering conventions have been proposed so far to boost the system lifetime and abatement the utilization vitality, the fundamental point of the sensor hubs is information correspondence, implies move of information packs from one hub to other inside the system. This correspondence is finished utilizing grouping and normal vitality of a hub. Each bunch chooses a pioneer called group head. The group heads CHs are chosen based by and large vitality and the likelihood. There are number of bunching conventions utilized for the group Head determination, the principle idea is the existence time of a system which relies on the normal vitality of the hub. In this work we proposed a model, which utilizes the leftover vitality for group head choice and LZW pressure Technique during the transmission of information bundles from CHs to base station. Work enhanced the throughput and life time of system and recoveries the vitality of hub during transmission and moves more information in less vitality utilization. The Proposed convention is called COMPRESSED MODLEACH.
Soni, G., Sudhakar, R..  2020.  A L-IDS against Dropping Attack to Secure and Improve RPL Performance in WSN Aided IoT. 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN). :377—383.

In the Internet of Things (IoT), it is feasible to interconnect networks of different devices and all these different devices, such as smartphones, sensor devices, and vehicles, are controlled according to a particular user. These different devices are delivered and accept the information on the network. This thing is to motivate us to do work on IoT and the devices used are sensor nodes. The validation of data delivery completely depends on the checks of count data forwarding in each node. In this research, we propose the Link Hop Value-based Intrusion Detection System (L-IDS) against the blackhole attack in the IoT with the assist of WSN. The sensor nodes are connected to other nodes through the wireless link and exchange data routing, as well as data packets. The LHV value is identified as the attacker's presence by integrating the data delivery in each hop. The LHV is always equivalent to the Actual Value (AV). The RPL routing protocol is used IPv6 to address the concept of routing. The Routing procedure is interrupted by an attacker by creating routing loops. The performance of the proposed L-IDS is compared to the RPL routing security scheme based on existing trust. The proposed L-IDS procedure is validating the presence of the attacker at every source to destination data delivery. and also disables the presence of the attacker in the network. Network performance provides better results in the existence of a security scheme and also fully represents the inoperative presence of black hole attackers in the network. Performance metrics show better results in the presence of expected IDS and improve network reliability.

Akter, S., Rahman, M. S., Mansoor, N..  2020.  An Efficient Routing Protocol for Secured Communication in Cognitive Radio Sensor Networks. 2020 IEEE Region 10 Symposium (TENSYMP). :1713–1716.
This paper introduces an efficient reactive routing protocol considering the mobility and the reliability of a node in Cognitive Radio Sensor Networks (CRSNs). The proposed protocol accommodates the dynamic behavior of the spectrum availability and selects a stable transmission path from a source node to the destination. Outlined as a weighted graph problem, the proposed protocol measures the weight for an edge the measuring the mobility patterns of the nodes and channel availability. Furthermore, the mobility pattern of a node is defined in the proposed routing protocol from the viewpoint of distance, speed, direction, and node's reliability. Besides, the spectrum awareness in the proposed protocol is measured over the number of shared common channels and the channel quality. It is anticipated that the proposed protocol shows efficient routing performance by selecting stable and secured paths from source to destination. Simulation is carried out to assess the performance of the protocol where it is witnessed that the proposed routing protocol outperforms existing ones.
Ashraf, S., Ahmed, T..  2020.  Sagacious Intrusion Detection Strategy in Sensor Network. 2020 International Conference on UK-China Emerging Technologies (UCET). :1—4.
Almost all smart appliances are operated through wireless sensor networks. With the passage of time, due to various applications, the WSN becomes prone to various external attacks. Preventing such attacks, Intrusion Detection strategy (IDS) is very crucial to secure the network from the malicious attackers. The proposed IDS methodology discovers the pattern in large data corpus which works for different types of algorithms to detect four types of Denial of service (DoS) attacks, namely, Grayhole, Blackhole, Flooding, and TDMA. The state-of-the-art detection algorithms, such as KNN, Naïve Bayes, Logistic Regression, Support Vector Machine (SVM), and ANN are applied to the data corpus and analyze the performance in detecting the attacks. The analysis shows that these algorithms are applicable for the detection and prediction of unavoidable attacks and can be recommended for network experts and analysts.
Preda, M., Patriciu, V..  2020.  Simulating RPL Attacks in 6lowpan for Detection Purposes. 2020 13th International Conference on Communications (COMM). :239–245.
The Internet of Things (IoT) integrates the Internet and electronic devices belonging to different domains, such as smart home automation, industrial processes, military applications, health, and environmental monitoring. Usually, IoT devices have limited resources and Low Power and Lossy Networks (LLNs) are being used to interconnect such devices. Routing Protocol for Low-Power and Lossy Networks (RPL) is one of the preferred routing protocols for this type of network, since it was specially developed for LLNs, also known as IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN). In this paper the most well-known routing attacks against 6LoWPAN networks were studied and implemented through simulation, conducting a behavioral analysis of network components (resources, topology, and data traffic) under attack condition. In order to achieve a better understanding on how attacks in 6LoWPAN work, we first conducted a study on 6LoWPAN networks and RPL protocol functioning. Furthermore, we also studied a series of well-known routing attacks against this type of Wireless Sensor Networks and these attacks were then simulated using Cooja simulator provided by Contiki operating system. The results obtained after the simulations are discussed along with other previous researches. This analysis may be of real interest when it comes to identify indicators of compromise for each type of attack and appropriate countermeasures for prevention and detection of these attacks.
Wang, H., Ma, L., Bai, H..  2020.  A Three-tier Scheme for Sybil Attack Detection in Wireless Sensor Networks. 2020 5th International Conference on Computer and Communication Systems (ICCCS). :752–756.
Wireless sensor network (WSN) is a wireless self-organizing multi-hop network that can sense and collect the information of the monitored environment through a certain number of sensor nodes which deployed in a certain area and transmit the collected information to the client. Due to the limited power and data capacity stored by the micro sensor, it is weak in communication with other nodes, data storage and calculation, and is very vulnerable to attack and harm to the entire network. The Sybil attack is a classic example. Sybil attack refers to the attack in which malicious nodes forge multiple node identities to participate in network operation. Malicious attackers can forge multiple node identities to participate in data forwarding. So that the data obtained by the end user without any use value. In this paper, we propose a three-tier detection scheme for the Sybil node in the severe environment. Every sensor node will determine whether they are Sybil nodes through the first-level and second-level high-energy node detection. Finally, the base station determines whether the Sybil node detected by the first two stages is true Sybil node. The simulation results show that our proposed scheme significantly improves network lifetime, and effectively improves the accuracy of Sybil node detection.
Zhou, Liming, Shan, Yingzi.  2019.  Multi-branch Source Location Privacy Protection Scheme Based on Random Walk in WSNs. 2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). :543–547.
In many applications, source nodes send the sensing information of the monitored objects and the sinks receive the transmitted data. Considering the limited resources of sensor nodes, location privacy preservation becomes an important issue. Although many schemes are proposed to preserve source or sink location security, few schemes can preserve the location security of source nodes and sinks. In order to solve this problem, we propose a novel of multi-branch source location privacy protection method based on random walk. This method hides the location of real source nodes by setting multiple proxy sources. And multiple neighbors are randomly selected by the real source node as receivers until a proxy source receives the packet. In addition, the proxy source is chosen randomly, which can prevent the attacker from obtaining the location-related data of the real source node. At the same time, the scheme sets up a branch interference area around the base station to interfere with the adversary by increasing routing branches. Simulation results describe that our scheme can efficiently protect source and sink location privacy, reduce the communication overhead, and prolong the network lifetime.
DaSilva, Gianni, Loud, Vincent, Salazar, Ana, Soto, Jeff, Elleithy, Abdelrahman.  2019.  Context-Oriented Privacy Protection in Wireless Sensor Networks. 2019 IEEE Long Island Systems, Applications and Technology Conference (LISAT). :1–4.
As more devices become connected to the internet and new technologies emerge to connect them, security must keep up to protect data during transmission and at rest. Several instances of security breaches have forced many companies to investigate the effectiveness of their security measures. In this paper, we discuss different methodologies for protecting data as it relates to wireless sensor networks (WSNs). Data collected from these sensors range in type from location data of an individual to surveillance for military applications. We propose a solution that protects the location of the base station and the nodes while transmitting data.
Xu, Mengmeng, Zhu, Hai, Wang, Juanjuan, Xu, Hengzhou.  2019.  Dynamic and Disjoint Routing Mechanism for Protecting Source Location Privacy in WSNs. 2019 15th International Conference on Computational Intelligence and Security (CIS). :310–314.
In this paper, we investigate the protection mechanism of source location privacy, in which back-tracing attack is performed by an adversary. A dynamic and disjoint routing mechanism (DDRM) is proposed to achieve a strong protection for source location privacy in an energy-efficient manner. Specially, the selection of intermediate node renders the message transmission randomly and flexibly. By constructing k disjoint paths, an adversary could not receive sufficient messages to locate the source node. Simulation results illustrate the effectiveness of the proposed mechanism.
Bai, Leqiang, Li, Guoku.  2018.  Location Privacy Protection of WSN Based on Network Partition and Angle. 2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). :1254–1260.
For the phantom routing algorithm, phantom source nodes are concentrated near the real source node, and for the angle based phantom routing algorithm, phantom source nodes focus on some areas, and the existing source location privacy protection algorithm has low security cycle, a source location privacy protection algorithm of wireless sensor networks based on angle and network partition is proposed. The algorithm selects the next hop node on forwarding path according to the angle relationship between neighbors, and ensures that phantom source nodes are far away from the real source node and have the diversity of geographic location through network partition. Simulation results show that, compared with the existing source location privacy protection algorithm, this algorithm can induce attackers to deviate from the real path, and increase security cycle.
Mutalemwa, Lilian C., Shin, Seokjoo.  2018.  Realizing Source Location Privacy in Wireless Sensor Networks Through Agent Node Routing. 2018 International Conference on Information and Communication Technology Convergence (ICTC). :1283–1285.
Wireless Sensor Networks (WSNs) are used in sensitive applications such as in asset monitoring applications. Due to the sensitivity of information in these applications, it is important to ensure that flow of data between sensor nodes is secure and does not expose any information about the source node or the monitored assets. This paper proposes a scheme to preserve the source location privacy based on random routing techniques. To achieve high privacy, the proposed scheme randomly sends packet to sink node through tactically positioned agent nodes. The position of agent nodes is designed to guarantee that successive packets are routed through highly random and perplexing routing paths as compared to other routing schemes. Simulation results demonstrate that proposed scheme provides longer safety period and higher privacy against both, patient and cautious adversaries.
Adilbekov, Ulugbek, Adilova, Anar, Saginbekov, Sain.  2018.  Providing Location Privacy Using Fake Sources in Wireless Sensor Networks. 2018 IEEE 12th International Conference on Application of Information and Communication Technologies (AICT). :1–4.
Wireless Sensor Networks (WSNs) consist of low-cost, resource-constrained sensor nodes and a designated node called a sink which collects data from the sensor nodes. A WSN can be used in numerous applications such as subject tracking and monitoring, where it is often desirable to keep the location of the subject private. Without location privacy protection, an adversary can locate the subject. In this paper, we propose an algorithm that tries to keep the subject location private from a global adversary, which can see the entire network traffic, in an energy efficient way.
Madhan, E.S., Ghosh, Uttam, Tosh, Deepak K., Mandal, K., Murali, E., Ghosh, Soumalya.  2019.  An Improved Communications in Cyber Physical System Architecture, Protocols and Applications. 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). :1–6.
In recent trends, Cyber-Physical Systems (CPS) and Internet of Things interpret an evolution of computerized integration connectivity. The specific research challenges in CPS as security, privacy, data analytics, participate sensing, smart decision making. In addition, The challenges in Wireless Sensor Network (WSN) includes secure architecture, energy efficient protocols and quality of services. In this paper, we present an architectures of CPS and its protocols and applications. We propose software related mobile sensing paradigm namely Mobile Sensor Information Agent (MSIA). It works as plug-in based for CPS middleware and scalable applications in mobile devices. The working principle MSIA is acts intermediary device and gathers data from a various external sensors and its upload to cloud on demand. CPS needs tight integration between cyber world and man-made physical world to achieve stability, security, reliability, robustness, and efficiency in the system. Emerging software-defined networking (SDN) can be integrated as the communication infrastructure with CPS infrastructure to accomplish such system. Thus we propose a possible SDN-based CPS framework to improve the performance of the system.
Wang, Haiyan.  2019.  The LDPC Code and Rateless Code for Wireless Sensor Network. 2019 2nd International Conference on Safety Produce Informatization (IICSPI). :389–393.
This paper gives a concept of wireless sensor network and describe the encoding algorithm and decoding algorithm along with the implementation of LDPC code and Rateless code. Compare the performances of those two code in WSN environment by making simulation in a Rayleigh channel in matlab and derive results and conclusions from the simulation.
Munsyi, Sudarsono, Amang, Harun Al Rasvid, M. Udin.  2018.  An Implementation of Data Exchange in Environmental Monitoring Using Authenticated Attribute-Based Encryption with Revocation. 2018 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC). :359—366.
Internet of things era grown very rapidly in Industrial Revolution 4.0, there are many researchers use the Wireless Sensor Network (WSN) technology to obtain the data for environmental monitoring. The data obtained from WSN will be sent to the Data Center, where users can view and collect all of data from the Data Center using end devices such as personal computer, laptop, and mobile phone. The Data Center would be very dangerous, because everyone can intercept, track and even modify the data. Security requirement to ensure the confidentiality all of stored data in the data center and give the authenticity in data has not changed during the collection process. Ciphertext Policy Attribute-Based Encryption (CP-ABE) can become a solution to secure the confidentiality for all of data. Only users with appropriate rule of policy can get the original data. To guarantee there is no changes during the collection process of the data then require the time stamp digital signature for securing the data integrity. To protect the confidentiality and data integrity, we propose a security mechanism using CP-ABE with user revocation and Time Stamp Digital Signature using Elliptic Curve Cryptography (ECC) 384 bits. Our system can do the revocation for the users who did the illegal access. Our system is not only securing the data but also providing the guarantee that is no changes during the collection process of the data from the Data Center.
Pruthi, Vardaan, Mittal, Kanika, Sharma, Nikhil, Kaushik, Ila.  2019.  Network Layers Threats its Countermeasures in WSNs. 2019 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :156—163.

WSN can be termed as a collection of dimensionally diffused nodes which are capable of surveilling and analyzing their surroundings. The sensors are delicate, transportable and small in size while being economical at the same time. However, the diffused nature of these networks also exposes them to a variety of security hazards. Hence, ensuring a reliable file exchange in these networks is not an easy job due to various security requirements that must be fulfilled. In this paper we concentrate mainly on network layer threats and their security countermeasures to overcome the scope of intruders to access the information without having any authentication on the network layer. Various network layer intrusions that are discussed here include Sinkhole Attack, Sybil Attack, Wormhole Attack, Selective Forwarding Attack, Blackhole Attack And Hello Flood Attack.

Alshinina, Remah, Elleithy, Khaled.  2018.  A highly accurate machine learning approach for developing wireless sensor network middleware. 2018 Wireless Telecommunications Symposium (WTS). :1–7.
Despite the popularity of wireless sensor networks (WSNs) in a wide range of applications, security problems associated with them have not been completely resolved. Middleware is generally introduced as an intermediate layer between WSNs and the end user to resolve some limitations, but most of the existing middleware is unable to protect data from malicious and unknown attacks during transmission. This paper introduces an intelligent middleware based on an unsupervised learning technique called Generative Adversarial Networks (GANs) algorithm. GANs contain two networks: a generator (G) network and a detector (D) network. The G creates fake data similar to the real samples and combines it with real data from the sensors to confuse the attacker. The D contains multi-layers that have the ability to differentiate between real and fake data. The output intended for this algorithm shows an actual interpretation of the data that is securely communicated through the WSN. The framework is implemented in Python with experiments performed using Keras. Results illustrate that the suggested algorithm not only improves the accuracy of the data but also enhances its security by protecting data from adversaries. Data transmission from the WSN to the end user then becomes much more secure and accurate compared to conventional techniques.
Chandre, Pankaj Ramchandra, Mahalle, Parikshit Narendra, Shinde, Gitanjali Rahul.  2018.  Machine Learning Based Novel Approach for Intrusion Detection and Prevention System: A Tool Based Verification. 2018 IEEE Global Conference on Wireless Computing and Networking (GCWCN). :135–140.
Now a day, Wireless Sensor Networks are widely used in military applications by its applications, it is extended to healthcare, industrial environments and many more. As we know that, there are some unique features of WSNs such as limited power supply, minimum bandwidth and limited energy. So, to secure traditional network, multiple techniques are available, but we can't use same techniques to secure WSNs. So to increase the overall security of WSNs, we required new ideas as well as new approaches. In general, intrusion prevention is the primary issue in WSNs and intrusion detection already reached to saturation. Thus, we need an efficient solution for proactive intrusion prevention towards WSNs. Thus, formal validation of protocols in WSN is an essential area of research. This research paper aims to formally verify as well as model some protocol used for intrusion detection using AVISPA tool and HLPSL language. In this research paper, the results of authentication and DoS attacks were detected is presented, but there is a need to prevent such type of attacks. In this research paper, a system is proposed in order to avoid intrusion using machine learning for the wireless sensor network. So, the proposed system will be used for intrusion prevention in a wireless sensor network.
Liu, Shan, Yue, Keming, Zhang, Yu, Yang, Huq, Liu, Lu, Duan, Xiaorong.  2018.  The Research on IOT Security Architecture and Its Key Technologies. 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :1277–1280.
With the development of scientific information technology, the emergence of the Internet of Things (IOT) promoted the information industry once again to a new stage of economic and technological development. From the perspective of confidentiality, integrity, and availability of information security, this paper analyzed the current state of the IOT and the security threats, and then researched the security primary technologies of the IOT security architecture. IOT security architecture established the foundation for a reliable information security system for the IOT.
Al-issa, Abdulaziz I., Al-Akhras, Mousa, ALsahli, Mohammed S., Alawairdhi, Mohammed.  2019.  Using Machine Learning to Detect DoS Attacks in Wireless Sensor Networks. 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). :107–112.

Widespread use of Wireless Sensor Networks (WSNs) introduced many security threats due to the nature of such networks, particularly limited hardware resources and infrastructure less nature. Denial of Service attack is one of the most common types of attacks that face such type of networks. Building an Intrusion Detection and Prevention System to mitigate the effect of Denial of Service attack is not an easy task. This paper proposes the use of two machine learning techniques, namely decision trees and Support Vector Machines, to detect attack signature on a specialized dataset. The used dataset contains regular profiles and several Denial of Service attack scenarios in WSNs. The experimental results show that decision trees technique achieved better (higher) true positive rate and better (lower) false positive rate than Support Vector Machines, 99.86% vs 99.62%, and 0.05% vs. 0.09%, respectively.

Kumar, A. Ranjith, Sivagami, A..  2019.  Balanced Load Clustering with Trusted Multipath Relay Routing Protocol for Wireless Sensor Network. 2019 Innovations in Power and Advanced Computing Technologies (i-PACT). 1:1–6.

Clustering is one of an eminent mechanism which deals with large number of nodes and effective consumption of energy in wireless sensor networks (WSN). Balanced Load Clustering is used to balance the channel bandwidth by incorporating the concept of HMAC. Presently several research studies works to improve the quality of service and energy efficiency of WSN but the security issues are not taken care of. Relay based multipath trust is one of the methods to secure the network. To this end, a novel approach called Balanced Load Clustering with Trusted Multipath Relay Routing Protocol (BLC-TMR2) to improve the performance of the network. The proposed protocol consists of two algorithms. Initially in order to reduce the energy consumption of the network, balanced load clustering (BLC) concepts is introduced. Secondly to secure the network from the malicious activity trusted multipath relay routing protocol (TMR2) is used. Multipath routing is monitored by the relay node and it computed the trust values. Network simulation (NS2) software is used to obtain the results and the results prove that the proposed system performs better the earlier methods the in terms of efficiency, consumption, QoS and throughput.

Arshad, Akashah, Hanapi, Zurina Mohd, Subramaniam, Shamala K., Latip, Rohaya.  2019.  Performance Evaluation of the Geographic Routing Protocols Scalability. 2019 International Conference on Information Networking (ICOIN). :396–398.
Scalability is an important design factor for evaluating the performance of routing protocols as the network size or traffic load increases. One of the most appropriate design methods is to use geographic routing approach to ensure scalability. This paper describes a scalability study comparing Secure Region Based Geographic Routing (SRBGR) and Dynamic Window Secure Implicit Geographic Forwarding (DWSIGF) protocols in various network density scenarios based on an end-to-end delay performance metric. The simulation studies were conducted in MATLAB 2106b where the network densities were varied according to the network topology size with increasing traffic rates. The results showed that DWSIGF has a lower end-to-end delay as compared to SRBGR for both sparse (15.4%) and high density (63.3%) network scenarios.Despite SRBGR having good security features, there is a need to improve the performance of its end-to-end delay to fulfil the application requirements.
Biswal, Satya Ranjan, Swain, Santosh Kumar.  2019.  Model for Study of Malware Propagation Dynamics in Wireless Sensor Network. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). :647–653.
Wireless Sensor Network (WSN) faces critical security challenges due to malware(worm, virus, malicious code etc.) attack. When a single node gets compromised by malware then start to spread in entire sensor network through neighboring sensor nodes. To understand the dynamics of malware propagation in WSN proposed a Susceptible-Exposed-Infectious-Recovered-Dead (SEIRD) model. This model used the concept of epidemiology. The model focused on early detection of malicious signals presence in the network and accordingly application of security mechanism for its removal. The early detection method helps in controlling of malware spread and reduce battery consumption of sensor nodes. In this paper study the dynamics of malware propagation and stability analysis of the system. In epidemiology basic reproduction number is a crucial parameter which is used for the determination of malware status in the system. The expression of basic reproduction number has been obtained. Analyze the propagation dynamics and compared with previous model. The proposed model provides improved security mechanism in comparison to previous one. The extensive simulation results conform the analytical investigation and accuracy of proposed model.
Alsumayt, Albandari, Albawardy, Norah, Aldossary, Wejdan, Alghamdi, Ebtehal, Aljammaz, Aljawhra.  2019.  Improve the security over the wireless sensor networks in medical sector. 2019 2nd International Conference on Computer Applications Information Security (ICCAIS). :1–4.
Nowadays with the huge technological development, the reliance on technology has become enormous. Wireless Sensor Networks (WSN) is an example of using the Internet and communication between the patient and the hospital. Easy use of such networks helps to increase the quality of communication between patient and hospital. With the development of technology increased risk in use. Any change in this data between the patient and the hospital may cause false data that may harm the patient. In this paper, a secure protocol is designed to ensure the confidentiality, integrity, and availability of data transfer between the hospital and the patient, depending on the AES and RC4 algorithms.
Tariq, Mahak, Khan, Mashal, Fatima, Sana.  2018.  Detection of False Data in Wireless Sensor Network Using Hash Chain. 2018 International Conference on Applied and Engineering Mathematics (ICAEM). :126-129.

Wireless Sensor Network (WSN) is often to consist of adhoc devices that have low power, limited memory and computational power. WSN is deployed in hostile environment, due to which attacker can inject false data easily. Due to distributed nature of WSN, adversary can easily inject the bogus data into the network because sensor nodes don't ensure data integrity and not have strong authentication mechanism. This paper reviews and analyze the performance of some of the existing false data filtering schemes and propose new scheme to identify the false data injected by adversary or compromised node. Proposed schemes shown better and efficiently filtrate the false data in comparison with existing schemes.