Visible to the public Biblio

Filters: Keyword is malware family classification  [Clear All Filters]
Xylogiannopoulos, Konstantinos F., Karampelas, Panagiotis, Alhajj, Reda.  2019.  Text Mining for Malware Classification Using Multivariate All Repeated Patterns Detection. 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). :887—894.

Mobile phones have become nowadays a commodity to the majority of people. Using them, people are able to access the world of Internet and connect with their friends, their colleagues at work or even unknown people with common interests. This proliferation of the mobile devices has also been seen as an opportunity for the cyber criminals to deceive smartphone users and steel their money directly or indirectly, respectively, by accessing their bank accounts through the smartphones or by blackmailing them or selling their private data such as photos, credit card data, etc. to third parties. This is usually achieved by installing malware to smartphones masking their malevolent payload as a legitimate application and advertise it to the users with the hope that mobile users will install it in their devices. Thus, any existing application can easily be modified by integrating a malware and then presented it as a legitimate one. In response to this, scientists have proposed a number of malware detection and classification methods using a variety of techniques. Even though, several of them achieve relatively high precision in malware classification, there is still space for improvement. In this paper, we propose a text mining all repeated pattern detection method which uses the decompiled files of an application in order to classify a suspicious application into one of the known malware families. Based on the experimental results using a real malware dataset, the methodology tries to correctly classify (without any misclassification) all randomly selected malware applications of 3 categories with 3 different families each.

Choi, Seok-Hwan, Shin, Jin-Myeong, Liu, Peng, Choi, Yoon-Ho.  2019.  Robustness Analysis of CNN-based Malware Family Classification Methods Against Various Adversarial Attacks. 2019 IEEE Conference on Communications and Network Security (CNS). :1—6.

As malware family classification methods, image-based classification methods have attracted much attention. Especially, due to the fast classification speed and the high classification accuracy, Convolutional Neural Network (CNN)-based malware family classification methods have been studied. However, previous studies on CNN-based classification methods focused only on improving the classification accuracy of malware families. That is, previous studies did not consider the cases that the accuracy of CNN-based malware classification methods can be decreased under the existence of adversarial attacks. In this paper, we analyze the robustness of various CNN-based malware family classification models under adversarial attacks. While adding imperceptible non-random perturbations to the input image, we measured how the accuracy of the CNN-based malware family classification model can be affected. Also, we showed the influence of three significant visualization parameters(i.e., the size of input image, dimension of input image, and conversion color of a special character)on the accuracy variation under adversarial attacks. From the evaluation results using the Microsoft malware dataset, we showed that even the accuracy over 98% of the CNN-based malware family classification method can be decreased to less than 7%.

Naeem, H., Guo, B., Naeem, M. R..  2018.  A light-weight malware static visual analysis for IoT infrastructure. 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD). :240–244.

Recently a huge trend on the internet of things (IoT) and an exponential increase in automated tools are helping malware producers to target IoT devices. The traditional security solutions against malware are infeasible due to low computing power for large-scale data in IoT environment. The number of malware and their variants are increasing due to continuous malware attacks. Consequently, the performance improvement in malware analysis is critical requirement to stop rapid expansion of malicious attacks in IoT environment. To solve this problem, the paper proposed a novel framework for classifying malware in IoT environment. To achieve flne-grained malware classification in suggested framework, the malware image classification system (MICS) is designed for representing malware image globally and locally. MICS first converts the suspicious program into the gray-scale image and then captures hybrid local and global malware features to perform malware family classification. Preliminary experimental outcomes of MICS are quite promising with 97.4% classification accuracy on 9342 windows suspicious programs of 25 families. The experimental results indicate that proposed framework is quite capable to process large-scale IoT malware.