Visible to the public Biblio

Filters: Keyword is quantitative analysis  [Clear All Filters]
2021-04-08
Cao, Z., Deng, H., Lu, L., Duan, X..  2014.  An information-theoretic security metric for future wireless communication systems. 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS). :1–4.
Quantitative analysis of security properties in wireless communication systems is an important issue; it helps us get a comprehensive view of security and can be used to compare the security performance of different systems. This paper analyzes the security of future wireless communication system from an information-theoretic point of view and proposes an overall security metric. We demonstrate that the proposed metric is more reasonable than some existing metrics and it is highly sensitive to some basic parameters and helpful to do fine-grained tuning of security performance.
2021-03-09
Tikhomirov, S., Moreno-Sanchez, P., Maffei, M..  2020.  A Quantitative Analysis of Security, Anonymity and Scalability for the Lightning Network. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :387—396.

Payment channel networks have been introduced to mitigate the scalability issues inherent to permissionless decentralized cryptocurrencies such as Bitcoin. Launched in 2018, the Lightning Network (LN) has been gaining popularity and consists today of more than 5000 nodes and 35000 payment channels that jointly hold 965 bitcoins (9.2M USD as of June 2020). This adoption has motivated research from both academia and industryPayment channels suffer from security vulnerabilities, such as the wormhole attack [39], anonymity issues [38], and scalability limitations related to the upper bound on the number of concurrent payments per channel [28], which have been pointed out by the scientific community but never quantitatively analyzedIn this work, we first analyze the proneness of the LN to the wormhole attack and attacks against anonymity. We observe that an adversary needs to control only 2% of nodes to learn sensitive payment information (e.g., sender, receiver, and amount) or to carry out the wormhole attack. Second, we study the management of concurrent payments in the LN and quantify its negative effect on scalability. We observe that for micropayments, the forwarding capability of up to 50% of channels is restricted to a value smaller than the channel capacity. This phenomenon hinders scalability and opens the door for denial-of-service attacks: we estimate that a network-wide DoS attack costs within 1.6M USD, while isolating the biggest community costs only 238k USDOur findings should prompt the LN community to consider the issues studied in this work when educating users about path selection algorithms, as well as to adopt multi-hop payment protocols that provide stronger security, privacy and scalability guarantees.

2020-05-15
Wang, Shaolei, Zhou, Ying, Li, Yaowei, Guo, Ronghua, Du, Jiawei.  2018.  Quantitative Analysis of Network Address Randomization's Security Effectiveness. 2018 IEEE 18th International Conference on Communication Technology (ICCT). :906—910.

The quantitative security effectiveness analysis is a difficult problem for the research of network address randomization techniques. In this paper, a system model and an attack model are proposed based on general attacks' attack processes and network address randomization's technical principle. Based on the models, the network address randomization's security effectiveness is quantitatively analyzed from the perspective of the attacker's attack time and attack cost in both static network address and network address randomization cases. The results of the analysis show that the security effectiveness of network address randomization is determined by the randomization frequency, the randomization space, the states of hosts in the target network, and the capabilities of the attacker.

2017-12-28
Henretty, T., Baskaran, M., Ezick, J., Bruns-Smith, D., Simon, T. A..  2017.  A quantitative and qualitative analysis of tensor decompositions on spatiotemporal data. 2017 IEEE High Performance Extreme Computing Conference (HPEC). :1–7.

Summary form only given. Strong light-matter coupling has been recently successfully explored in the GHz and THz [1] range with on-chip platforms. New and intriguing quantum optical phenomena have been predicted in the ultrastrong coupling regime [2], when the coupling strength Ω becomes comparable to the unperturbed frequency of the system ω. We recently proposed a new experimental platform where we couple the inter-Landau level transition of an high-mobility 2DEG to the highly subwavelength photonic mode of an LC meta-atom [3] showing very large Ω/ωc = 0.87. Our system benefits from the collective enhancement of the light-matter coupling which comes from the scaling of the coupling Ω ∝ √n, were n is the number of optically active electrons. In our previous experiments [3] and in literature [4] this number varies from 104-103 electrons per meta-atom. We now engineer a new cavity, resonant at 290 GHz, with an extremely reduced effective mode surface Seff = 4 × 10-14 m2 (FE simulations, CST), yielding large field enhancements above 1500 and allowing to enter the few (\textbackslashtextless;100) electron regime. It consist of a complementary metasurface with two very sharp metallic tips separated by a 60 nm gap (Fig.1(a, b)) on top of a single triangular quantum well. THz-TDS transmission experiments as a function of the applied magnetic field reveal strong anticrossing of the cavity mode with linear cyclotron dispersion. Measurements for arrays of only 12 cavities are reported in Fig.1(c). On the top horizontal axis we report the number of electrons occupying the topmost Landau level as a function of the magnetic field. At the anticrossing field of B=0.73 T we measure approximately 60 electrons ultra strongly coupled (Ω/ω- \textbackslashtextbar\textbackslashtextbar

2015-11-11
John C. Mace, Newcastle University, Charles Morisset, Newcastle University, Aad Van Moorsel, Newcastle University.  2015.  Resiliency Variance in Workflows with Choice. International Workshop on Software Engineering for Resilient Systems (SERENE 2015).

Computing a user-task assignment for a workflow coming with probabilistic user availability provides a measure of completion rate or resiliency. To a workflow designer this indicates a risk of failure, espe- cially useful for workflows which cannot be changed due to rigid security constraints. Furthermore, resiliency can help outline a mitigation strategy which states actions that can be performed to avoid workflow failures. A workflow with choice may have many different resiliency values, one for each of its execution paths. This makes understanding failure risk and mitigation requirements much more complex. We introduce resiliency variance, a new analysis metric for workflows which indicates volatility from the resiliency average. We suggest this metric can help determine the risk taken on by implementing a given workflow with choice. For instance, high average resiliency and low variance would suggest a low risk of workflow failure.

2015-05-01
Shuai Yi, Xiaogang Wang.  2014.  Profiling stationary crowd groups. Multimedia and Expo (ICME), 2014 IEEE International Conference on. :1-6.

Detecting stationary crowd groups and analyzing their behaviors have important applications in crowd video surveillance, but have rarely been studied. The contributions of this paper are in two aspects. First, a stationary crowd detection algorithm is proposed to estimate the stationary time of foreground pixels. It employs spatial-temporal filtering and motion filtering in order to be robust to noise caused by occlusions and crowd clutters. Second, in order to characterize the emergence and dispersal processes of stationary crowds and their behaviors during the stationary periods, three attributes are proposed for quantitative analysis. These attributes are recognized with a set of proposed crowd descriptors which extract visual features from the results of stationary crowd detection. The effectiveness of the proposed algorithms is shown through experiments on a benchmark dataset.