Visible to the public Biblio

Found 154 results

Filters: Keyword is mobile ad hoc networks  [Clear All Filters]
Suciu, George, Hussain, Ijaz, Petrescu, Gabriel.  2020.  Role of Ubiquitous Computing and Mobile WSN Technologies and Implementation. 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE). :1–6.
Computing capabilities such as real time data, unlimited connection, data from sensors, environmental analysis, automated decisions (machine learning) are demanded by many areas like industry for example decision making, machine learning, by research and military, for example GPS, sensor data collection. The possibility to make these features compatible with each domain that demands them is known as ubiquitous computing. Ubiquitous computing includes network topologies such as wireless sensor networks (WSN) which can help further improving the existing communication, for example the Internet. Also, ubiquitous computing is included in the Internet of Things (IoT) applications. In this article, it is discussed the mobility of WSN and its advantages and innovations, which make possible implementations for smart home and office. Knowing the growing number of mobile users, we place the mobile phone as the key factor of the future ubiquitous wireless networks. With secure computing, communicating, and storage capacities of mobile devices, they can be taken advantage of in terms of architecture in the sense of scalability, energy efficiency, packet delay, etc. Our work targets to present a structure from a ubiquitous computing point of view for researchers who have an interest in ubiquitous computing and want to research on the analysis, to implement a novel method structure for the ubiquitous computing system in military sectors. Also, this paper presents security and privacy issues in ubiquitous sensor networks (USN).
Naveena, S., Senthilkumar, C., Manikandan, T..  2020.  Analysis and Countermeasures of Black-Hole Attack in MANET by Employing Trust-Based Routing. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). :1222–1227.
A self-governing system consisting of mobile nodes that exchange information within a cellular area and is known as a mobile ad hoc network (MANET). Due to its dynamic nature, it is vulnerable to attacks and there is no fixed infrastructure. To transfer a data packet Ad-hoc On-Demand Distance Vector (AODV) is used and it's another form of a reactive protocol. The black-hole attack is a major attack that drastically decreases the packet delivery ratio during a data transaction in a routing environment. In this attack, the attacker's node acts as the shortest path to the target node itself. If the attacker node receives the data packet from the source node, all obtained data packets are excluded from a routing network. A trust-based routing scheme is suggested to ensure secure routing. This routing scheme is divided into two stages, i.e., the Data retrieval (DR), to identify and preserve each node data transfer mechanism in a routing environment and route development stage, to predict a safe path to transmit a data packet to the target node.
Shakeel, M., Saeed, K., Ahmed, S., Nawaz, A., Jan, S., Najam, Z..  2020.  Analysis of Different Black Hole Attack Detection Mechanisms for AODV Routing Protocol in Robotics Mobile AdHoc Networks. 2020 Advances in Science and Engineering Technology International Conferences (ASET). :1–6.
Robotics Mobile Ad-hoc Networks (MANETs) are comprised of stations having mobility with no central authority and control. The stations having mobility in Robotics MANETs work as a host as well as a router. Due to the unique characteristics of Robotics MANETs such type of networks are vulnerable to different security attacks. Ad-hoc On-demand Distance Vector (AODV) is a routing protocol that belongs to the reactive category of routing protocols in Robotics MANETs. However, it is more vulnerable to the Black hole (BH) attack that is one of the most common attacks in the Robotics MANETs environment. In this attack during the route disclosure procedure a malicious station promotes itself as a most brief path to the destination as well as after that drop every one of the data gotten by the malicious station. Meanwhile the packets don't reach to its ideal goal, the BH attack turns out to be progressively escalated when a heap of malicious stations attack the system as a gathering. This research analyzed different BH finding as well as removal mechanisms for AODV routing protocol.
Chakravorty, R., Prakash, J..  2020.  A Review on Prevention and Detection Schemes for Black Hole Attacks in MANET. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :801–806.
Mobile Ad hoc Network (MANET) is one of the emerging technologies to communicate between nodes and its decentralized structure, self-configuring nature are the few properties of this Ad hoc network. Due to its undefined structure, it has found its usage in the desired and temporary communication network. MANET has many routing protocols governing it and due to its changing topology, there can be many issues arise in recent times. Problems like no central node, limited energy, and the quality of service, performance, design issues, and security challenges have been bugging the researchers. The black hole attacks are the kind that cause ad hoc network to be at loss of information and make the source to believe that it has the actual least distance path to the destination, but in real scenario the packets do not get forwarded to neighbouring nodes. In this paper, we have discussed different solutions over the past years to deal with such attacks. A summary of the schemes with their results and drawbacks in terms of performance metrics is also given.
Oakley, I..  2020.  Solutions to Black Hole Attacks in MANETs. 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). :1–6.
Self-organising networks, such as mobile ad-hoc networks (MANETs), are growing more and more in importance each day. However, due to their nature and constraints MANETs are vulnerable to a wide array of attacks, such as black hole attacks. Furthermore, there are numerous routing protocols in use in MANETs, and what works for one might not for another. In this paper, we present a review of previous surveys of black hole attack solutions, followed by a collation of recently published papers categorised by original routing protocol and evaluated on a set of common metrics. Finally, we suggest areas for further research.
Omprakash, S. H., Suthar, M. K..  2020.  Mitigation Technique for Black hole Attack in Mobile Ad hoc Network. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–5.
Mobile Ad hoc Network is a very important key technology for device to device communication without any support of extra infrastructure. As it is being used as a mode of communication in various fields, protecting the network from various attacks becomes more important. In this research paper, we have created a real network scenario using random mobility of nodes and implemented Black hole Attack and Gray hole Attack, which degrades the performance of the network. In our research, we have found a novel mitigation technique which is efficient to mitigate both the attack from the network.
Sonekar, S. V., Pal, M., Tote, M., Sawwashere, S., Zunke, S..  2020.  Computation Termination and Malicious Node Detection using Finite State Machine in Mobile Adhoc Networks. 2020 7th International Conference on Computing for Sustainable Global Development (INDIACom). :156—161.

The wireless technology has knocked the door of tremendous usage and popularity in the last few years along with a high growth rate for new applications in the networking domain. Mobile Ad hoc Networks (MANETs) is solitary most appealing, alluring and challenging field where in the participating nodes do not require any active, existing and centralized system or rigid infrastructure for execution purpose and thus nodes have the moving capability on arbitrary basis. Radio range nodes directly communicate with each other through the wireless links whereas outside range nodes uses relay principle for communication. Though it is a rigid infrastructure less environment and has high growth rate but security is a major concern and becomes vital part of providing hostile free environment for communication. The MANET imposes several prominent challenges such as limited energy reserve, resource constraints, highly dynamic topology, sharing of wireless medium, energy inefficiency, recharging of the batteries etc. These challenges bound to make MANET more susceptible, more close to attacks and weak unlike the wired line networks. Theresearch paperismainly focused on two aspects, one is computation termination of cluster head algorithm and another is use of finite state machine for attacks identification.

Sharma, V., Renu, Shree, T..  2020.  An adaptive approach for Detecting Blackhole using TCP Analysis in MANETs. 2nd International Conference on Data, Engineering and Applications (IDEA). :1—5.

From recent few years, need of information security is realized by society amd researchers specially in multi-path, unstructured networks as Mobile Ad-hoc Network. Devices connected in such network are self-configuring and small in size and can communicate in infra less environment. Architecture is very much dynamic and absence of central controlling authority puts challenges to the network by making more vulnerable for various threats and attacks in order to exploit the function of the network. The paper proposes, TCP analysis against very popular attack i.e. blackhole attack. Under different circumstance, reliable transport layer protocol TCP is analyzed for the effects of the attack on adhoc network. Performance has been measured using metrics of average throughput, normalized routing load and end to end delay and conclusions have been drawn based on that.

Menaka, R., Mathana, J. M., Dhanagopal, R., Sundarambal, B..  2020.  Performance Evaluation of DSR Protocol in MANET Untrustworthy Environment. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). :1049—1052.

In the Mobile Ad hoc Network, the entire nodes taken as routers and contribute transmission when the nodes are not in the range of transmission for the senders. Directing conventions for the ad hoc systems are intended for the indisposed system setting, on the supposition that all the hubs in the system are reliable. Dependability of the directing convention is endangered in the genuine setting as systems are assaulted by pernicious hubs which regularly will in general upset the correspondence. Right now, it is proposed to contemplate the exhibition of the DSR convention under deceitful conditions. Another strategy is proposed to recognize untrue nodes dependent on the RREQ control parcel arrangement.

Hussain, M. S., Khan, K. U. R..  2020.  Network-based Anomaly Intrusion Detection System in MANETS. 2020 Fourth International Conference on Inventive Systems and Control (ICISC). :881—886.

In the communication model of wired and wireless Adhoc networks, the most needed requirement is the integration of security. Mobile Adhoc networks are more aroused with the attacks compared to the wired environment. Subsequently, the characteristics of Mobile Adhoc networks are also influenced by the vulnerability. The pre-existing unfolding solutions are been obtained for infrastructure-less networks. However, these solutions are not always necessarily suitable for wireless networks. Further, the framework of wireless Adhoc networks has uncommon vulnerabilities and due to this behavior it is not protected by the same solutions, therefore the detection mechanism of intrusion is combinedly used to protect the Manets. Several intrusion detection techniques that have been developed for a fixed wired network cannot be applied in this new environment. Furthermore, The issue of intensity in terms of energy is of a major kind due to which the life of the working battery is very limited. The objective this research work is to detect the Anomalous behavior of nodes in Manet's and Experimental analysis is done by making use of Network Simulator-2 to do the comparative analysis for the existing algorithm, we enhanced the previous algorithm in order to improve the Energy efficiency and results shown the improvement of energy of battery life and Throughput is checked with respect to simulation of test case analysis. In this paper, the proposed algorithm is compared with the existing approach.

Kumar, R., Mishra, A. K., Singh, D. K..  2020.  Packet Loss Avoidance in Mobile Adhoc Network by using Trusted LDoS Techniques. 2nd International Conference on Data, Engineering and Applications (IDEA). :1—5.
Packet loss detection and prevention is full-size module of MANET protection systems. In trust based approach routing choices are managed with the aid of an unbiased have faith table. Traditional trust-based techniques unsuccessful to notice the essential underlying reasons of a malicious events. AODV is an approachable routing set of guidelines finds a supply to an endpoint only on request. LDoS cyber-attacks ship assault statistics packets after period to time in a brief time period. The community multifractal ought to be episodic when LDoS cyber-attacks are hurled unpredictably. Real time programs in MANET necessitate certain QoS advantages, such as marginal end-to-end facts packet interval and unobjectionable records forfeiture. Identification of malevolent machine, information security and impenetrable direction advent in a cell system is a key tasks in any wi-fi network. However, gaining the trust of a node is very challenging, and by what capability it be able to get performed is quiet ambiguous. This paper propose a modern methodology to detect and stop the LDoS attack and preserve innocent from wicked nodes. In this paper an approach which will improve the safety in community by identifying the malicious nodes using improved quality grained packet evaluation method. The approach also multiplied the routing protection using proposed algorithm The structure also accomplish covered direction-finding to defend Adhoc community against malicious node. Experimentally conclusion factor out that device is fine fabulous for confident and more advantageous facts communication.
Murugan, S., Jeyakarthic, M..  2020.  An Energy Efficient Security Aware Clustering approach using Fuzzy Logic for Mobile Adhoc Networks. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). :551—555.

Security awareness and energy efficiency are two crucial optimization issues present in MANET where the network topology gets adequately changed and is not predictable which affects the lifetime of the MANET. They are extensively analyzed to improvise the lifetime of the MANET. This paper concentrates on the design of an energy-efficient security-aware fuzzy-based clustering (SFLC) technique to make the network secure and energy-efficient. The selection of cluster heads (CHD) process using fuzzy logic (FL) involves the trust factor as an important input variable. Once the CHDs are elected successfully, clusters will be constructed and start to communication with one another as well as the base station (BS). The presented SFLC model is simulated using NS2 and the performance is validated in terms of energy, lifetime and computation time.

Pandey, S., Singh, V..  2020.  Blackhole Attack Detection Using Machine Learning Approach on MANET. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). :797–802.

Mobile Ad-hoc Network (MANET) consists of different configurations, where it deals with the dynamic nature of its creation and also it is a self-configurable type of a network. The primary task in this type of networks is to develop a mechanism for routing that gives a high QoS parameter because of the nature of ad-hoc network. The Ad-hoc-on-Demand Distance Vector (AODV) used here is the on-demand routing mechanism for the computation of the trust. The proposed approach uses the Artificial neural network (ANN) and the Support Vector Machine (SVM) for the discovery of the black hole attacks in the network. The results are carried out between the black hole AODV and the security mechanism provided by us as the Secure AODV (SAODV). The results were tested on different number of nodes, at last, it has been experimented for 100 nodes which provide an improvement in energy consumption of 54.72%, the throughput is 88.68kbps, packet delivery ratio is 92.91% and the E to E delay is of about 37.27ms.

Zhou, Z., Qian, L., Xu, H..  2019.  Intelligent Decentralized Dynamic Power Allocation in MANET at Tactical Edge based on Mean-Field Game Theory. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :604—609.

In this paper, decentralized dynamic power allocation problem has been investigated for mobile ad hoc network (MANET) at tactical edge. Due to the mobility and self-organizing features in MANET and environmental uncertainties in the battlefield, many existing optimal power allocation algorithms are neither efficient nor practical. Furthermore, the continuously increasing large scale of the wireless connection population in emerging Internet of Battlefield Things (IoBT) introduces additional challenges for optimal power allocation due to the “Curse of Dimensionality”. In order to address these challenges, a novel Actor-Critic-Mass algorithm is proposed by integrating the emerging Mean Field game theory with online reinforcement learning. The proposed approach is able to not only learn the optimal power allocation for IoBT in a decentralized manner, but also effectively handle uncertainties from harsh environment at tactical edge. In the developed scheme, each agent in IoBT has three neural networks (NN), i.e., 1) Critic NN learns the optimal cost function that minimizes the Signal-to-interference-plus-noise ratio (SINR), 2) Actor NN estimates the optimal transmitter power adjustment rate, and 3) Mass NN learns the probability density function of all agents' transmitting power in IoBT. The three NNs are tuned based on the Fokker-Planck-Kolmogorov (FPK) and Hamiltonian-Jacobian-Bellman (HJB) equation given in the Mean Field game theory. An IoBT wireless network has been simulated to evaluate the effectiveness of the proposed algorithm. The results demonstrate that the actor-critic-mass algorithm can effectively approximate the probability distribution of all agents' transmission power and converge to the target SINR. Moreover, the optimal decentralized power allocation is obtained through integrated mean-field game theory with reinforcement learning.

Vaseer, G., Ghai, G., Ghai, D., Patheja, P. S..  2019.  A Neighbor Trust-Based Mechanism to Protect Mobile Networks. IEEE Potentials. 38:20–25.
Mobile nodes in a mobile ad hoc network (MANET) form a temporal link between a sender and receiver due to their continuous movement in a limited area. This network can be easily attacked because there is no organized identity. This article discusses the MANET, its various associated challenges, and selected solutions. As a case study, a neighbor trust-based security scheme that can prevent malicious attacks in a MANET is discussed in detail. The security scheme identifies each node's behavior in the network in terms of packets received and forwarded. Nodes are placed in a suspicious range, and if the security scheme detects malicious function continuously, then it is confirmed that the particular node is the attacker in the network.
Li, T., Ma, J., Pei, Q., Song, H., Shen, Y., Sun, C..  2019.  DAPV: Diagnosing Anomalies in MANETs Routing With Provenance and Verification. IEEE Access. 7:35302–35316.
Routing security plays an important role in the mobile ad hoc networks (MANETs). Despite many attempts to improve its security, the routing mechanism of MANETs remains vulnerable to attacks. Unlike most existing solutions that prevent the specific problems, our approach tends to detect the misbehavior and identify the anomalous nodes in MANETs automatically. The existing approaches offer support for detecting attacks or debugging in different routing phases, but many of them cannot answer the absence of an event. Besides, without considering the privacy of the nodes, these methods depend on the central control program or a third party to supervise the whole network. In this paper, we present a system called DAPV that can find single or collaborative malicious nodes and the paralyzed nodes which behave abnormally. DAPV can detect both direct and indirect attacks launched during the routing phase. To detect malicious or abnormal nodes, DAPV relies on two main techniques. First, the provenance tracking enables the hosts to deduce the expected log information of the peers with the known log entries. Second, the privacy-preserving verification uses Merkle Hash Tree to verify the logs without revealing any privacy of the nodes. We demonstrate the effectiveness of our approach by applying DAPV to three scenarios: 1) detecting injected malicious intermediated routers which commit active and passive attacks in MANETs; 2) resisting the collaborative black-hole attack of the AODV protocol, and; 3) detecting paralyzed routers in university campus networks. Our experimental results show that our approach can detect the malicious and paralyzed nodes, and the overhead of DAPV is moderate.
Thurston, K. H., Leon, D. Conte de.  2019.  MACH-2K Architecture: Building Mobile Device Trust and Utility for Emergency Response Networks. 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems Workshops (MASSW). :152–157.
In this article, we introduce the MACH-2K trust overlay network and its architecture. MACH-2K's objectives are to (a) enhance the resiliency of emergency response and public service networks and (b) help build such networks in places, or at times, where network infrastructure is limited. Resiliency may be enhanced in an economic manner by building new ad hoc networks of private mobile devices and joining these to public service networks at specific trusted points. The major barrier to building resiliency by using private devices is ensuring security. MACH-2K uses device location and communication utility patterns to assign trust to devices, after owner approval. After trust is established, message confidentiality, privacy, and integrity may be implemented by well-known cryptographic means. MACH-2K devices may be then requested to forward or consume different types of messages depending on their current level of trust and utility.
Krishnasamy, G..  2019.  An Energy Aware Fuzzy Trust based Clustering with group key Management in MANET Multicasting. 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS). :1–5.
The group key maintenance in MANET is especially risky, because repeated node movement, link breakdown and lower capacity resources. The member movement needs key refreshment to maintain privacy among members. To survive with these characteristics variety of clustering concepts used to subdivide the network. To establish considerably stable and trustable environment fuzzy based trust clustering taken into consideration with Group key management. The nodes with highest trust and energy elected as Cluster Head and it forms cluster in its range. The proposed work analyze secure multicast transmission by implementing Polynomial-based key management in Fuzzy Trust based clustered networks (FTBCA) for secure multicast transmission that protect against both internal and external attackers and measure the performance by injecting attack models.
Mohsen, Y., Hamdy, M., Shaaban, E..  2019.  Key distribution protocol for Identity Hiding in MANETs. 2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS). :245–252.
Mobile Ad-hoc Networks (MANETs) are formed when a group of mobile nodes, communicate through wireless links in the absence of central administration. These features make them more vulnerable to several attacks like identity spoofing which leads to identity disclosure. Providing anonymity and privacy for identity are critical issues, especially when the size of such networks scales up. to avoid the centralization problem for key distribution in MANETs. This paper proposes a key distribution scheme for clustered ad-hoc networks. The network is divided into groups of clusters, and each cluster head is responsible for distributing periodically updated security keys among cluster members, for protecting privacy through encryption. Also, an authentication scheme is proposed to ensure the confidentiality of new members to the cluster. The simulation study proves the effectiveness of the proposed scheme in terms of availability and overhead. It scales well for high dense networks and gives less packet drop rate compared to its centralized counterpart in the presence of malicious nodes.
Gupta, D. S., Islam, S. H., Obaidat, M. S..  2019.  A Secure Identity-based Deniable Authentication Protocol for MANETs. 2019 International Conference on Computer, Information and Telecommunication Systems (CITS). :1–5.
A deniable authentication (DA) protocol plays a vital role to provide security and privacy of the mobile nodes in a mobile ad hoc network (MANET). In recent years, a number of similar works have been proposed, but most of them experience heavy computational and communication overhead. Further, most of these protocols are not secure against different attacks. To address these concerns, we devised an identity-based deniable authentication (IBDA) protocol with adequate security and efficiency. The proposed IBDA protocol is mainly designed for MANETs, where the mobile devices are resource-limited. The proposed IBDA protocol used the elliptic curve cryptography (ECC) and identity-based cryptosystem (IBC). The security of our IBDA protocol depends on the elliptic curve discrete logarithm (ECDL) problem and bilinear Diffie-Hellman (BDH) problem.
Kadhim, H., Hatem, M. A..  2019.  Secure Data Packet in MANET Based Chaos-Modified AES Algorithm. 2019 2nd International Conference on Engineering Technology and its Applications (IICETA). :208–213.
Security is one of the more challenging problem for wireless Ad-Hoc networks specially in MANT due their features like dynamic topology, no centralized infrastructure, open architecture, etc. that make its more prone to different attacks. These attacks can be passive or active. The passive attack it hard to detect it in the network because its targets the confidential of data packet by eavesdropping on it. Therefore, the privacy preservation for data packets payload which it transmission over MANET has been a major part of concern. especially for safety-sensitive applications such as, privacy conference meetings, military applications, etc. In this paper it used symmetric cryptography to provide privacy for data packet by proposed modified AES based on five proposed which are: Key generation based on multi chaotic system, new SubByte, new ShiftRows, Add-two-XOR, Add-Shiftcycl.
Bakht, Humayun, Eding, Samuel.  2018.  Policy-Based Approach for Securing Message Dissemination in Mobile Ad Hoc Networks. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :1040—1045.

Mobile ad hoc networks present numerous advantages compared to traditional networks. However, due to the fact that they do not have any central management point and are highly dynamic, mobile ad hoc networks display many issues. The one study in this paper is the one related to security. A policy based approach for securing messages dissemination in mobile ad hoc network is proposed in order to tackle that issue.

Dholey, Milan Kumar, Biswas, G. P..  2018.  Secure DSR Routing from Malicious Node by PGP Encryption. 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI). :1449—1453.

Mobile ad hoc network (MANET) is an infrastructure less, self organizing on demand wireless communication. The nodes communicate among themselves through their radio range and nodes within the range are known as neighbor nodes. DSR (Dynamic Source Routing), a MANET reactive routing protocol identify the destination by transmitting route request (RREQ) control message into the network and establishes a path after receiving route reply (RREP) control messages. The intermediate node lies in between source to destination may also send RREP control message, weather they have path information about that destination is present into their route cache due to any previous communication. A malicious node may enter within the network and may send RREP control message to the source before original RREP is being received. After receiving RREP without knowing about the destination source starts to send data and data may reached to a different location. In this paper we proposed a novel algorithm by which a malicious node, even stay in the network and send RREP control message but before data transmission source can authenticate the destination by applying PGP (pretty Good Privacy) encryption program. In order to design our algorithm we proposed to add an extra field with RREQ control message with a unique index value (UIV) and two extra fields in RREP applied over UIV to form a random key (Rk) in such a way that, our proposal can maintained two way authorization scheme. Even a malicious node may exists into the network but before data transmission source can identified weather RREP is received by the requested destination or a by a malicious node.

Noguchi, Taku, Hayakawa, Mayuko.  2018.  Black Hole Attack Prevention Method Using Multiple RREPs in Mobile Ad Hoc Networks. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :539—544.

A mobile ad hoc network (MANET) is a collection of mobile nodes that do not need to rely on a pre-existing network infrastructure or centralized administration. Securing MANETs is a serious concern as current research on MANETs continues to progress. Each node in a MANET acts as a router, forwarding data packets for other nodes and exchanging routing information between nodes. It is this intrinsic nature that introduces the serious security issues to routing protocols. A black hole attack is one of the well-known security threats for MANETs. A black hole is a security attack in which a malicious node absorbs all data packets by sending fake routing information and drops them without forwarding them. In order to defend against a black hole attack, in this paper we propose a new threshold-based black hole attack prevention method using multiple RREPs. To investigate the performance of the proposed method, we compared it with existing methods. Our simulation results show that the proposed method outperforms existing methods from the standpoints of packet delivery rate, throughput, and routing overhead.

El-Zoghby, Ayman M., Mosharafa, Ahmed, Azer, Marianne A..  2018.  Anonymous Routing Protocols in MANETs, a Security Comparative Analysis. 2018 14th International Computer Engineering Conference (ICENCO). :254—259.

A Mobile Ad Hoc Network (MANET) is considered a type of network which is wireless and has no fixed infrastructure composed of a set if nodes in self organized fashion which are randomly, frequently and unpredictably mobile. MANETs can be applied in both military and civil environments ones because of its numerous applications. This is due to their special characteristics and self-configuration capability. This is due to its dynamic nature, lack of fixed infrastructure, and the no need of being centrally managed; a special type of routing protocols such as Anonymous routing protocols are needed to hide the identifiable information of communicating parties, while preserving the communication secrecy. This paper provides an examination of a comprehensive list of anonymous routing protocols in MANET, focusing their security and performance capabilities.