Visible to the public Biblio

Filters: Keyword is channel coding  [Clear All Filters]
2022-09-16
Kaur, Satwinder, Kuttan, Deepak B, Mittal, Nitin.  2021.  An Energy-saving Approach for Error control Codes in Wireless Sensor Networks. 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC). :313—316.
Wireless Sensor Networks (WSNs) have limited energy resource which requires authentic data transmission at a minimum cost. The major challenge is to deploy WSN with limited energy and lifetime of nodes while taking care of secure data communication. The transmission of data from the wireless channels may cause many losses such as fading, noise, bit error rate increases as well as deplete the energy resource from the nodes. To reduce the adverse effects of losses and to save power usage, error control coding (ECC) techniques are widely used and it also brings coding gain. Since WSN have limited energy resource so the selection of ECC is very difficult as both power consumption, as well as BER, has also taken into consideration. This research paper reviews different types of models, their applications, limitations of the sensor networks, and what are different types of future works going to overcome the limitations.
2022-07-01
Chen, Lei.  2021.  Layered Security Multicast Algorithm based on Security Energy Efficiency Maximization in SCMA Networks. 2021 7th International Conference on Computer and Communications (ICCC). :2033–2037.
This paper studies the hierarchical secure multicast algorithm in sparse code multiple access (SCMA) networks, its network security capacity is no longer limited by the users with the worst channel quality in multicast group. Firstly, we propose a network security energy efficiency (SEE) maximization problem. Secondly, in order to reduce the computational complexity, we propose a suboptimal algorithm (SA), which separates the codebook assignment with artificial noise from the power allocation with artificial noise. To further decrease the complexity of Lagrange method, a power allocation algorithm with increased fixed power is introduced. Finally, simulation results show that the network performance of the proposed algorithm in SCMA network is significantly better than that in orthogonal frequency division multiple access (OFDMA) network.
Harrison, Willie K., Shoushtari, Morteza.  2021.  On Caching with Finite Blocklength Coding for Secrecy over the Binary Erasure Wiretap Channel. 2021 Wireless Telecommunications Symposium (WTS). :1–6.
In this paper, we show that caching can aid in achieving secure communications by considering a wiretap scenario where the transmitter and legitimate receiver share access to a secure cache, and an eavesdropper is able to tap transmissions over a binary erasure wiretap channel during the delivery phase of a caching protocol. The scenario under consideration gives rise to a new channel model for wiretap coding that allows the transmitter to effectively choose a subset of bits to erase at the eavesdropper by caching the bits ahead of time. The eavesdropper observes the remainder of the coded bits through the wiretap channel for the general case. In the wiretap type-II scenario, the eavesdropper is able to choose a set of revealed bits only from the subset of bits not cached. We present a coding approach that allows efficient use of the cache to realize a caching gain in the network, and show how to use the cache to optimize the information theoretic security in the choice of a finite blocklength code and the choice of the cached bit set. To our knowledge, this is the first work on explicit algorithms for secrecy coding in any type of caching network.
Rangi, Anshuka, Franceschetti, Massimo.  2021.  Channel Coding Theorems in Non-stochastic Information Theory. 2021 IEEE International Symposium on Information Theory (ISIT). :1790–1795.
Recently, the δ-mutual information between uncertain variables has been introduced as a generalization of Nair's non-stochastic mutual information functional [1], [2]. Within this framework, we introduce four different notions of capacity and present corresponding coding theorems. Our definitions include an analogue of Shannon's capacity in a non-stochastic setting, and a generalization of the zero-error capacity. The associated coding theorems hold for stationary, memoryless, non-stochastic uncertain channels. These results establish the relationship between the δ-mutual information and our operational definitions, providing a step towards the development of a complete non-stochastic information theory.
Cribbs, Michael, Romero, Ric, Ha, Tri.  2021.  Modulation-Based Physical Layer Security via Gray Code Hopping. 2021 IEEE International Workshop Technical Committee on Communications Quality and Reliability (CQR 2021). :1–6.
A physical layer security (PLS) technique called Gray Code Hopping (GCH) is presented offering simplistic implementation and no bit error rate (BER) performance degradation over the main channel. A synchronized transmitter and receiver "hop" to an alternative binary reflected Gray code (BRGC) mapping of bits to symbols between each consecutive modulation symbol. Monte Carlo simulations show improved BER performance over a similar technique from the literature. Simulations also confirm compatibility of GCH with either hard or soft decision decoding methods. Simplicity of GCH allows for ready implementation in adaptive 5th Generation New Radio (5G NR) modulation coding schemes.
Pinto, Thyago M. S., Vilela, João P., Gomes, Marco A. C., Harrison, Willie K..  2021.  Keyed Polar Coding for Physical-Layer Security without Channel State Information. ICC 2021 - IEEE International Conference on Communications. :1–6.
Polar codes have been shown to provide an effective mechanism for achieving physical-layer security over various wiretap channels. A majority of these schemes require channel state information (CSI) at the encoder for both intended receivers and eavesdroppers. In this paper, we consider a polar coding scheme for secrecy over a Gaussian wiretap channel when no CSI is available. We show that the availability of a shared keystream between friendly parties allows polar codes to be used for both secure and reliable communications, even when the eavesdropper knows a large fraction of the keystream. The scheme relies on a predetermined strategy for partitioning the bits to be encoded into a set of frozen bits and a set of information bits. The frozen bits are filled with bits from the keystream, and we evaluate the security gap when the cyclic redundancy check-aided successive cancellation list decoder is used at both receivers in the wiretap channel model.
Chen, Liquan, Guo, Xing, Lu, Tianyu, Gao, Yuan.  2021.  Formalization of the Secrecy Capacity in Non-degraded Wiretap Channel. 2021 7th International Conference on Computer and Communications (ICCC). :535–538.
Unlike the traditional key-exchange based cryptography, physical layer security is built on information theory and aims to achieve unconditional security by exploiting the physical characteristics of wireless channels. With the growth of the number of wireless devices, physical layer security has been gradually emphasized by researchers. Various physical layer security protocols have been proposed for different communication scenarios. Since these protocols are based on information-theoretic security and the formalization work for information theory were not complete when these protocols were proposed, the security of these protocols lacked formal proofs. In this paper, we propose a formal definition for the secrecy capacity in non-degraded wiretap channel model and a formal proof for the secrecy capacity in binary symmetric channel with the help of SSReflect/Coq theorem prover.
El-Halabi, Mustafa, Mokbel, Hoda.  2021.  Physical-Layer Security for 5G Wireless Networks: Sharing Non-Causal CSI with the Eavesdropper. IEEE EUROCON 2021 - 19th International Conference on Smart Technologies. :343–347.
Physical-layer security is a new paradigm that offers data protection against eavesdropping in wireless 5G networks. In this context, the Gaussian channel is a typical model that captures the practical aspects of confidentially transmitting a message through the wireless medium. In this paper, we consider the peculiar case of transmitting a message through a wireless, state-dependent channel which is prone to eavesdropping, where the state knowledge is non-causally known and shared between the sender and the eavesdropper. We show that a novel structured coding scheme, which combines random coding arguments and the dirty-paper coding technique, achieves the fundamental limit of secure and reliable communication for the considered model.
Zhu, Guangming, Chen, Deyuan, Zhang, Can, Qi, Yongzhi.  2021.  Secure Turbo-Polar Codes Information Transmission on Wireless Channel. 2021 IEEE 15th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :116–121.
Based on the structure of turbo-polar codes, a secure symmetric encryption scheme is proposed to enhance information transmission security in this paper. This scheme utilizes interleaving at information bits and puncturing at parity bits for several times in the encoder. Correspondingly, we need to do the converse interleaving and fill zeros accurately at punctured position. The way of interleaving and puncturing is controlled by the private key of symmetric encryption, making sure the security of the system. The security of Secure Turbo-Polar Codes (STPC) is analyzed at the end of this paper. Simulation results are given to shown that the performance and complexity of Turbo-Polar Codes have little change after symmetric encryption. We also investigate in depth the influence of different remaining parity bit ratios on Frame Error Rate (FER). At low Signal to Noise Rate (SNR), we find it have about 0.6dB advantage when remaining parity bit ratio is between 1/20 and 1/4.
Li, Lintao, Xing, Yiran, Yao, Xiaoxia, Luo, Yuquan.  2021.  McEliece Coding Method based on LDPC Code with Application to Physical Layer Security. 2021 7th International Conference on Computer and Communications (ICCC). :2042–2045.

The ubiquity of wireless communication systems has resulted in extensive concern regarding their security issues. Combination of signaling and secrecy coding can provide greater improvement of confidentiality than tradition methods. In this work, we mainly focus on the secrecy coding design for physical layer security in wireless communications. When the main channel and wiretap channel are noisy, we propose a McEliece secure coding method based on LDPC which can guarantee both reliability between intended users and information security with respect to eavesdropper simultaneously. Simulation results show that Bob’s BER will be significantly decreased with the SNR increased, while Eve get a BER of 0.5 no matter how the SNR changes.

2022-06-30
Okumura, Mamoru, Tomoki, Kaga, Okamoto, Eiji, Yamamoto, Tetsuya.  2021.  Chaos-Based Interleave Division Multiple Access Scheme with Physical Layer Security. 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC). :1—2.

Interleave division multiple access (IDMA) is a multiple-access scheme and it is expected to improve frequency efficiency. Meanwhile, the damage caused by cyberattacks is increasing yearly. To solve this problem, we propose a method of applying radio-wave encryption to IDMA based on chaos modulation to realize physical layer security and the channel coding effect. We show that the proposed scheme ensures physical layer security and obtains channel coding gain by numerical simulations.

2021-07-27
Kim, Hyeji, Jiang, Yihan, Kannan, Sreeram, Oh, Sewoong, Viswanath, Pramod.  2020.  Deepcode: Feedback Codes via Deep Learning. IEEE Journal on Selected Areas in Information Theory. 1:194—206.
The design of codes for communicating reliably over a statistically well defined channel is an important endeavor involving deep mathematical research and wide-ranging practical applications. In this work, we present the first family of codes obtained via deep learning, which significantly outperforms state-of-the-art codes designed over several decades of research. The communication channel under consideration is the Gaussian noise channel with feedback, whose study was initiated by Shannon; feedback is known theoretically to improve reliability of communication, but no practical codes that do so have ever been successfully constructed. We break this logjam by integrating information theoretic insights harmoniously with recurrent-neural-network based encoders and decoders to create novel codes that outperform known codes by 3 orders of magnitude in reliability and achieve a 3dB gain in terms of SNR. We also demonstrate several desirable properties of the codes: (a) generalization to larger block lengths, (b) composability with known codes, and (c) adaptation to practical constraints. This result also has broader ramifications for coding theory: even when the channel has a clear mathematical model, deep learning methodologies, when combined with channel-specific information-theoretic insights, can potentially beat state-of-the-art codes constructed over decades of mathematical research.
2021-04-08
Bloch, M., Barros, J., Rodrigues, M. R. D., McLaughlin, S. W..  2008.  Wireless Information-Theoretic Security. IEEE Transactions on Information Theory. 54:2515–2534.
This paper considers the transmission of confidential data over wireless channels. Based on an information-theoretic formulation of the problem, in which two legitimates partners communicate over a quasi-static fading channel and an eavesdropper observes their transmissions through a second independent quasi-static fading channel, the important role of fading is characterized in terms of average secure communication rates and outage probability. Based on the insights from this analysis, a practical secure communication protocol is developed, which uses a four-step procedure to ensure wireless information-theoretic security: (i) common randomness via opportunistic transmission, (ii) message reconciliation, (iii) common key generation via privacy amplification, and (iv) message protection with a secret key. A reconciliation procedure based on multilevel coding and optimized low-density parity-check (LDPC) codes is introduced, which allows to achieve communication rates close to the fundamental security limits in several relevant instances. Finally, a set of metrics for assessing average secure key generation rates is established, and it is shown that the protocol is effective in secure key renewal-even in the presence of imperfect channel state information.
Wu, X., Yang, Z., Ling, C., Xia, X..  2016.  Artificial-Noise-Aided Message Authentication Codes With Information-Theoretic Security. IEEE Transactions on Information Forensics and Security. 11:1278–1290.
In the past, two main approaches for the purpose of authentication, including information-theoretic authentication codes and complexity-theoretic message authentication codes (MACs), were almost independently developed. In this paper, we consider to construct new MACs, which are both computationally secure and information-theoretically secure. Essentially, we propose a new cryptographic primitive, namely, artificial-noise-aided MACs (ANA-MACs), where artificial noise is used to interfere with the complexity-theoretic MACs and quantization is further employed to facilitate packet-based transmission. With a channel coding formulation of key recovery in the MACs, the generation of standard authentication tags can be seen as an encoding process for the ensemble of codes, where the shared key between Alice and Bob is considered as the input and the message is used to specify a code from the ensemble of codes. Then, we show that artificial noise in ANA-MACs can be well employed to resist the key recovery attack even if the opponent has an unlimited computing power. Finally, a pragmatic approach for the analysis of ANA-MACs is provided, and we show how to balance the three performance metrics, including the completeness error, the false acceptance probability, and the conditional equivocation about the key. The analysis can be well applied to a class of ANA-MACs, where MACs with Rijndael cipher are employed.
2021-03-15
Shekhawat, G. K., Yadav, R. P..  2020.  Sparse Code Multiple Access based Cooperative Spectrum Sensing in 5G Cognitive Radio Networks. 2020 5th International Conference on Computing, Communication and Security (ICCCS). :1–6.
Fifth-generation (5G) network demands of higher data rate, massive user connectivity and large spectrum can be achieve using Sparse Code Multiple Access (SCMA) scheme. The integration of cognitive feature spectrum sensing with SCMA can enhance the spectrum efficiency in a heavily dense 5G wireless network. In this paper, we have investigated the primary user detection performance using SCMA in Centralized Cooperative Spectrum Sensing (CCSS). The developed model can support massive user connectivity, lower latency and higher spectrum utilization for future 5G networks. The simulation study is performed for AWGN and Rayleigh fading channel. Log-MPA iterative receiver based Log-Likelihood Ratio (LLR) soft test statistic is passed to Fusion Center (FC). The Wald-hypothesis test is used at FC to finalize the PU decision.
Babu, S. A., Ameer, P. M..  2020.  Physical Adversarial Attacks Against Deep Learning Based Channel Decoding Systems. 2020 IEEE Region 10 Symposium (TENSYMP). :1511–1514.

Deep Learning (DL), in spite of its huge success in many new fields, is extremely vulnerable to adversarial attacks. We demonstrate how an attacker applies physical white-box and black-box adversarial attacks to Channel decoding systems based on DL. We show that these attacks can affect the systems and decrease performance. We uncover that these attacks are more effective than conventional jamming attacks. Additionally, we show that classical decoding schemes are more robust than the deep learning channel decoding systems in the presence of both adversarial and jamming attacks.

Ibrahim, A. A., Ata, S. Özgür, Durak-Ata, L..  2020.  Performance Analysis of FSO Systems over Imperfect Málaga Atmospheric Turbulence Channels with Pointing Errors. 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). :1–5.
In this study, we investigate the performance of FSO communication systems under more realistic channel model considering atmospheric turbulence, pointing errors and channel estimation errors together. For this aim, we first derived the composite probability density function (PDF) of imperfect Málaga turbulence channel with pointing errors. Then using this PDF, we obtained bit-error-rate (BER) and ergodic channel capacity (ECC) expressions in closed forms. Additionally, we present the BER and ECC metrics of imperfect Gamma-Gamma and K turbulence channels with pointing errors as special cases of Málaga channel. We further verified our analytic results through Monte-Carlo simulations.
Chai, L., Ren, P., Du, Q..  2020.  A Secure Transmission Scheme Based on Efficient Transmission Fountain Code. 2020 IEEE/CIC International Conference on Communications in China (ICCC). :600–604.

Improving the security of data transmission in wireless channels is a key and challenging problem in wireless communication. This paper presents a data security transmission scheme based on high efficiency fountain code. If the legitimate receiver can decode all the original files before the eavesdropper, it can guarantee the safe transmission of the data, so we use the efficient coding scheme of the fountain code to ensure the efficient transmission of the data, and add the feedback mechanism to the transmission of the fountain code so that the coding scheme can be updated dynamically according to the decoding situation of the legitimate receiver. Simulation results show that the scheme has high security and transmitter transmission efficiency in the presence of eavesdropping scenarios.

Zheng, T., Liu, H., Wang, Z., Yang, Q., Wang, H..  2020.  Physical-Layer Security with Finite Blocklength over Slow Fading Channels. 2020 International Conference on Computing, Networking and Communications (ICNC). :314–319.
This paper studies physical-layer security over slow fading channels, considering the impact of finite-blocklength secrecy coding. A comprehensive analysis and optimization framework is established to investigate the secrecy throughput (ST) of a legitimate user pair coexisting with an eavesdropper. Specifically, we devise both adaptive and non-adaptive optimization schemes to maximize the ST, where we derive optimal parameters including the transmission policy, blocklength, and code rates based on the instantaneous and statistical channel state information of the legitimate pair, respectively. Various important insights are provided. In particular, 1) increasing blocklength improves both reliability and secrecy with our transmission policy; 2) ST monotonically increases with blocklength; 3) ST initially increases and then decreases with secrecy rate, and there exists a critical secrecy rate that maximizes the ST. Numerical results are presented to verify theoretical findings.
Besser, K., Lonnstrom, A., Jorswieck, E. A..  2020.  Neural Network Wiretap Code Design for Multi-Mode Fiber Optical Channels. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :8738–8742.
The design of reliable and secure codes with finite block length is an important requirement for industrial machine type communications. In this work, we develop an autoencoder for the multi-mode fiber wiretap channel taking into account the error performance at the legitimate receiver and the information leakage at potential eavesdroppers. The estimate of the mutual information leakage includes AWGN and fading channels. The code design is tailored to the specific channel setup where the eavesdropper experiences a mode dependent loss. Numerical simulations illustrate the performance and show a Pareto improvement of the proposed scheme compared to the state-of-the-art polar wiretap codes.
Xiong, J., Zhang, L..  2020.  Simplified Calculation of Bhattacharyya Parameters in Polar Codes. 2020 IEEE 14th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :169–173.
The construction of polar code refers to selecting K "most reliable polarizing channels" in N polarizing channels to WN(1)transmit information bits. For non-systematic polar code, Arikan proposed a method to measure the channel reliability for BEC channel, which is called Bhattacharyya Parameter method. The calculated complexity of this method is O(N) . In this paper, we find the complementarity of Bhattacharyya Parameter. According to the complementarity, the code construction under a certain channel condition can be quickly deduced from the complementary channel condition.
2021-02-23
Wang, L., Guo, D..  2020.  Secure Communication Based on Reliability-Based Hybrid ARQ and LDPC Codes. 2020 Prognostics and Health Management Conference (PHM-Besançon). :304—308.
This paper designs a re-transmission strategy to intensify the security of communication over the additive white Gaussian noise (AWGN) wire-tap channel. In this scheme, irregular low-density parity-check (LDPC) codes work with reliability-based hybrid automatic repeat-request (RB-HARQ). For irregular LDPC codes, the variable nodes have different degrees, which means miscellaneous protection for the nodes. In RB-HARQ protocol, the legitimate receiver calls for re-transmissions including the most unreliable bits at decoder's outputting. The bits' reliability can be evaluated by the average magnitude of a posteriori probability log-likelihood ratios (APP LLRs). Specifically, this scheme utilizes the bit-error rate (BER) to assess the secrecy performance. Besides, the paper gives close analyses of BER through theoretical arguments and simulations. Results of numerical example demonstrate that RB-HARQ protocol with irregular LDPC codes can hugely reinforce the security performance of the communication system.
Xie, L. F., Ho, I. W., Situ, Z., Li, P..  2020.  The Impact of CFO on OFDM based Physical-layer Network Coding with QPSK Modulation. 2020 IEEE Wireless Communications and Networking Conference (WCNC). :1—6.
This paper studies Physical-layer Network Coding (PNC) in a two-way relay channel (TWRC) operated based on OFDM and QPSK modulation but with the presence of carrier frequency offset (CFO). CFO, induced by node motion and/or oscillator mismatch, causes inter-carrier interference (ICI) that impairs received signals in PNC. Our ultimate goal is to empower the relay in TWRC to decode network-coded information of the end users at a low bit error rate (BER) under CFO, as it is impossible to eliminate the CFO of both end users. For that, we first put forth two signal detection and channel decoding schemes at the relay in PNC. For signal detection, both schemes exploit the signal structure introduced by ICI, but they aim for different output, thus differing in the subsequent channel decoding. We then consider CFO compensation that adjusts the CFO values of the end nodes simultaneously and find that an optimal choice is to yield opposite CFO values in PNC. Particularly, we reveal that pilot insertion could play an important role against the CFO effect, indicating that we may trade more pilots for not just a better channel estimation but also a lower BER at the relay in PNC. With our proposed measures, we conduct simulation using repeat-accumulate (RA) codes and QPSK modulation to show that PNC can achieve a BER at the relay comparable to that of point-to-point transmissions for low to medium CFO levels.
Kabatiansky, G., Egorova, E..  2020.  Adversarial multiple access channels and a new model of multimedia fingerprinting coding. 2020 IEEE Conference on Communications and Network Security (CNS). :1—5.

We consider different models of malicious multiple access channels, especially for binary adder channel and for A-channel, and show how they can be used for the reformulation of digital fingerprinting coding problems. In particular, we propose a new model of multimedia fingerprinting coding. In the new model, not only zeroes and plus/minus ones but arbitrary coefficients of linear combinations of noise-like signals for forming watermarks (digital fingerprints) can be used. This modification allows dramatically increase the possible number of users with the property that if t or less malicious users create a forge digital fingerprint then a dealer of the system can find all of them with zero-error probability. We show how arisen problems are related to the compressed sensing problem.

2021-02-10
ZivariFard, H., Bloch, M., Nosratinia, A..  2020.  Keyless Covert Communication in the Presence of Channel State Information. 2020 IEEE International Symposium on Information Theory (ISIT). :834—839.
We consider the problem of covert communication when Channel State Information (CSI) is available non-causally, causally, and strictly causally at both transmitter and receiver, as well as the case when channel state information is only available at the transmitter. Covert communication with respect to an adversary referred to as the "warden", is one in which the distribution induced during communication at the channel output observed by the warden is identical to the output distribution conditioned on an innocent channel-input symbol. In contrast to previous work, we do not assume the availability of a shared key at the transmitter and legitimate receiver; instead shared randomness is extracted from the channel state, in a manner that keeps it secret from the warden despite the influence of the channel state on the warden's output. When CSI is available at both transmitter and receiver, we derive the covert capacity region; when CSI is only available at the transmitter, we derive inner and outer bounds on the covert capacity. We also derive the covert capacity when the warden's channel is less noisy with respect to the legitimate receiver. We provide examples for which covert capacity is zero without channel state information, but is positive in the presence of channel state information.