Visible to the public Biblio

Filters: Keyword is AODV  [Clear All Filters]
2022-02-08
Shukla, Mukul, Joshi, Brijendra Kumar.  2021.  A Trust Based Approach to Mitigate Wormhole Attacks in Mobile Adhoc Networks. 2021 10th IEEE International Conference on Communication Systems and Network Technologies (CSNT). :776–782.
MANET stands for Mobile ad-hoc network, which is also known as a wireless network. It provides a routable networking environment which does not have a centralized infrastructure. MANET is used in many important sectors like economic sector (corporate field), security sector (military field), education sector (video conferences and lectures), law sector (law enforcement) and many more. Even though it plays a vital role in different sectors and improves its economic growth, security is a major concern in MANET. Due to lack of inbuilt security, several attacks like data traffic attack, control traffic attack. The wormhole is a kind of control traffic attack which forms wormhole link between nodes. In this paper, we have proposed an approach to detect and get rid of the wormhole attack. The proposed approach is based on trust values, which will decide whether nodes are affected by using parameters like receiving time and data rate. On evaluation, we have concluded that the wormhole attack decreases the network's performance while using trusted approach its value increases. Means PDR and throughput return best results for the affected network while in case of end to end delay it returns similar results as of unaffected network.
Gupta, Aruna, Sasikala, T..  2021.  Secure Routing Protocols for MANET-enabled IoT. 2021 IEEE International Conference on Mobile Networks and Wireless Communications (ICMNWC). :1–4.
Mobile Ad-hoc Networks (MANET) is an autonomous network consisting of movable devices that can form a network using wireless media. MANET routing protocols can be used for selecting an efficient and shortest path for data transmission between nodes in a smart environment formed by the Internet of Things (IoT). Networking in such MANET-enabled IoT system is based on the routing protocols of MANET, data sensing from things, and data handling and processing using IoT. This paper studies proactive approach-based secure routing protocols for MANET-enabled IoT and analyses these protocols to identify security issues in it. Since this fusion network is resource-constrained in nature, each of the studied protocol is evaluated to check if it is lightweight or not. Also, the solution to defend against active attacks in this network is discussed.
Siddiqui, Muhammad Nasir, Malik, Kaleem Razzaq, Malik, Tauqeer Safdar.  2021.  Performance Analysis of Blackhole and Wormhole Attack in MANET Based IoT. 2021 International Conference on Digital Futures and Transformative Technologies (ICoDT2). :1–8.
In Mobile Ad-hoc Network based Internet of things (MANET-IoT), nodes are mobile, infrastructure less, managed and organized by themselves that have important role in many areas such as Mobile Computing, Military Sector, Sensor Networks Commercial Sector, medical etc. One major problem in MANET based IoT is security because nodes are mobile, having not any central administrator and are also not reliable. So, MANET-IoT is more defenseless to denial-of-service attacks for-example Blackhole, Wormhole, Gray-hole etc. To compare the performance of network under different attacks for checking which attack is more affecting the performance of network, we implemented Blackhole and Wormhole attack by modifying AODV routing protocol in NS-3. After preprocessing of data that is obtained by using Flow-monitor module, we calculated performance parameters such as Average Throughput, Average Packet Delivery Ratio, Average End to End Delay, Average Jitter-Sum and compared it with no. of nodes in MANET-IoT network. Throughput and goodput performance of each node in the network is also calculated by using Trace metric module and compared with each node in the network. This approach is also very helpful for further research in MANET-IoT Security.
2022-02-07
Shah, Imran Ali, Kapoor, Nitika.  2021.  To Detect and Prevent Black Hole Attack in Mobile Ad Hoc Network. 2021 2nd Global Conference for Advancement in Technology (GCAT). :1–4.
Mobile Ad hoc Networks ‘MANETs’ are still defenseless against peripheral threats due to the fact that this network has vulnerable access and also the absence of significant fact of administration. The black hole attack is a kind of some routing attack, in this type of attack the attacker node answers to the Route Requests (RREQs) thru faking and playing itself as an adjacent node of the destination node in order to get through the data packets transported from the source node. To counter this situation, we propose to deploy some nodes (exhibiting some distinctive functionality) in the network called DPS (Detection and Prevention System) nodes that uninterruptedly monitor the RREQs advertised by all other nodes in the networks. DPS nodes target to satisfy the set objectives in which it has to sense the mischievous nodes by detecting the activities of their immediate neighbor. In the case, when a node demonstrates some peculiar manners, which estimates according to the experimental data, DPS node states that particular distrustful node as black hole node by propagation of a threat message to all the remaining nodes in the network. A protocol with a clustering approach in AODV routing protocol is used to sense and avert the black hole attack in the mentioned network. Consequently, empirical evaluation shows that the black hole node is secluded and prohibited from the whole system and is not allowed any data transfer from any node thereafter.
Khan, Asif Uddin, Puree, Rajesh, Mohanta, Bhabendu Kumar, Chedup, Sangay.  2021.  Detection and Prevention of Blackhole Attack in AODV of MANET. 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). :1–7.
One of the most dynamic network is the Mobile Adhoc (MANET) network. It is a list of numerous mobile nodes. Dynamic topology and lack of centralization are the basic characteristics of MANET. MANETs are prone to many attacks due to these characteristics. One of the attacks carried out on the network layer is the blackhole attack. In a black-hole attack, by sending false routing information, malicious nodes interrupt data transmission. There are two kinds of attacks involving a black-hole, single and co-operative. There is one malicious node in a single black-hole attack that can act as the node with the highest sequence number. The node source would follow the direction of the malicious node by taking the right direction. There is more than one malicious node in the collaborative black-hole attack. One node receives a packet and sends it to another malicious node in this attack. It is very difficult to detect and avoid black-hole attacks. Many researchers have invented black-hole attack detection and prevention systems. In this paper, We find a problem in the existing solution, in which validity bit is used. This paper also provides a comparative study of many scholars. The source node is used to detect and prevent black hole attacks by using a binary partition clustering based algorithm. We compared the performance of the proposed solution with existing solution and shown that our solution outperforms the existing one.
2022-01-10
Khan, Ausaf Umar, Chawhan, Manish Devendra, Mushrif, Milind Madhukar, Neole, Bhumika.  2021.  Performance Analysis of Adhoc On-demand Distance Vector Protocol under the influence of Black-Hole, Gray-Hole and Worm-Hole Attacks in Mobile Adhoc Network. 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS). :238–243.
Adhoc On-demand Distance Vector (AODV) is the well-known reactive routing protocol of Mobile Adhoc Network (MANET). Absence of security mechanism in AODV disturbs the routing because of misbehavior of attack and hence, degrades MANET's performance. Secure and efficient routing is a need of various commercial and non-commercial applications of MANET including military and war, disaster and earthquake, and riot control. This paper presents a design of important network layer attacks include black-hole (BH), gray-hole (GH) and worm-hole (WH) attacks. The performance analysis of AODV protocol is carried out under the influence of each designed attack by using the network simulator, NetSim. Simulation results show that, the network layer attacks affect packet delivery ability of AODV protocol with low energy consumption and in short time. Design of attacks helps to understand attack's behavior and hence, to develop security mechanism in AODV.
2021-08-02
Terai, Takeru, Yoshida, Masami, Ramonet, Alberto Gallegos, Noguchi, Taku.  2020.  Blackhole Attack Cooperative Prevention Method in MANETs. 2020 Eighth International Symposium on Computing and Networking Workshops (CANDARW). :60–66.
Blackhole (BH) attacks are one of the most serious threats in mobile ad-hoc networks. A BH is a security attack in which a malicious node absorbs data packets and sends fake routing information to neighboring nodes. BH attacks are widely studied. However, existing defense methods wrongfully assume that BH attacks cannot overcome the most common defense approaches. A new wave of BH attacks is known as smart BH attacks. In this study, we used a highly aggressive type of BH attack that can predict sequence numbers to overcome traditional detection methods that set a threshold to sequence numbers. To protect the network from this type of BH attack, we propose a detection-and-prevention method that uses local information shared with neighboring nodes. Our experiments show that the proposed method successfully detects and contains even smart BH threats. Consequently, the attack success rate decreases.
Shrestha, Sijan, Baidya, Ranjai, Giri, Bivek, Thapa, Anup.  2020.  Securing Blackhole Attacks in MANETs using Modified Sequence Number in AODV Routing Protocol. 2020 8th International Electrical Engineering Congress (iEECON). :1–4.
Mobile Ad-hoc Network (MANET) is a dynamic network between mobile nodes for sharing of information and is popular for its infrastructure-less design. Due to the lack of central governing body, however, various security threats come forward in MANETs in comparison to its infrastructure based counterparts. Blackhole attack is one of the most challenging security issues present in MANETs. Blackhole attack reduces network efficiency considerably by disrupting the flow of data between source and destination. In this paper, we propose an algorithm which is based on the technique of changing the sequence number present in control packets, in particular the Route Reply Packets (RREP) in widely used Ad-Hoc On Demand Distance Vector (AODV) routing protocol, in order to identify the blackhole nodes and thereby to minimize the data loss by discarding the route with such Blackhole nodes. Simulation results show that the proposed algorithm outperforms the legacy Intrusion Detection System (IDS) provisioned for AODV.
2021-03-09
Oakley, I..  2020.  Solutions to Black Hole Attacks in MANETs. 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). :1–6.
Self-organising networks, such as mobile ad-hoc networks (MANETs), are growing more and more in importance each day. However, due to their nature and constraints MANETs are vulnerable to a wide array of attacks, such as black hole attacks. Furthermore, there are numerous routing protocols in use in MANETs, and what works for one might not for another. In this paper, we present a review of previous surveys of black hole attack solutions, followed by a collation of recently published papers categorised by original routing protocol and evaluated on a set of common metrics. Finally, we suggest areas for further research.
Fiade, A., Triadi, A. Yudha, Sulhi, A., Masruroh, S. Ummi, Handayani, V., Suseno, H. Bayu.  2020.  Performance Analysis of Black Hole Attack and Flooding Attack AODV Routing Protocol on VANET (Vehicular Ad-Hoc Network). 2020 8th International Conference on Cyber and IT Service Management (CITSM). :1–5.
Wireless technology is widely used today and is growing rapidly. One of the wireless technologies is VANET where the network can communicate with vehicles (V2V) which can prevent accidents on the road. Energy is also a problem in VANET so it needs to be used efficiently. The presence of malicious nodes or nodes can eliminate and disrupt the process of data communication. The routing protocol used in this study is AODV. The purpose of this study is to analyze the comparison of blackhole attack and flooding attack against energy-efficient AODV on VANET. This research uses simulation methods and several supporting programs such as OpenStreetMap, SUMO, NS2, NAM, and AWK to test the AODV routing protocol. Quality of service (QOS) parameters used in this study are throughput, packet loss, and end to end delay. Energy parameters are also used to examine the energy efficiency used. This study uses the number of variations of nodes consisting of 20 nodes, 40 nodes, 60 nodes, and different network conditions, namely normal network conditions, network conditions with black hole attacks, and network conditions with flooding attacks. The results obtained can be concluded that the highest value of throughput when network conditions are normal, the greatest value of packet loss when there is a black hole attack, the highest end to end delay value and the largest remaining energy when there is a flooding attack.
2020-12-28
Sharma, V., Renu, Shree, T..  2020.  An adaptive approach for Detecting Blackhole using TCP Analysis in MANETs. 2nd International Conference on Data, Engineering and Applications (IDEA). :1—5.

From recent few years, need of information security is realized by society amd researchers specially in multi-path, unstructured networks as Mobile Ad-hoc Network. Devices connected in such network are self-configuring and small in size and can communicate in infra less environment. Architecture is very much dynamic and absence of central controlling authority puts challenges to the network by making more vulnerable for various threats and attacks in order to exploit the function of the network. The paper proposes, TCP analysis against very popular attack i.e. blackhole attack. Under different circumstance, reliable transport layer protocol TCP is analyzed for the effects of the attack on adhoc network. Performance has been measured using metrics of average throughput, normalized routing load and end to end delay and conclusions have been drawn based on that.

2020-12-14
Pandey, S., Singh, V..  2020.  Blackhole Attack Detection Using Machine Learning Approach on MANET. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). :797–802.

Mobile Ad-hoc Network (MANET) consists of different configurations, where it deals with the dynamic nature of its creation and also it is a self-configurable type of a network. The primary task in this type of networks is to develop a mechanism for routing that gives a high QoS parameter because of the nature of ad-hoc network. The Ad-hoc-on-Demand Distance Vector (AODV) used here is the on-demand routing mechanism for the computation of the trust. The proposed approach uses the Artificial neural network (ANN) and the Support Vector Machine (SVM) for the discovery of the black hole attacks in the network. The results are carried out between the black hole AODV and the security mechanism provided by us as the Secure AODV (SAODV). The results were tested on different number of nodes, at last, it has been experimented for 100 nodes which provide an improvement in energy consumption of 54.72%, the throughput is 88.68kbps, packet delivery ratio is 92.91% and the E to E delay is of about 37.27ms.

2020-10-29
Noguchi, Taku, Hayakawa, Mayuko.  2018.  Black Hole Attack Prevention Method Using Multiple RREPs in Mobile Ad Hoc Networks. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :539—544.

A mobile ad hoc network (MANET) is a collection of mobile nodes that do not need to rely on a pre-existing network infrastructure or centralized administration. Securing MANETs is a serious concern as current research on MANETs continues to progress. Each node in a MANET acts as a router, forwarding data packets for other nodes and exchanging routing information between nodes. It is this intrinsic nature that introduces the serious security issues to routing protocols. A black hole attack is one of the well-known security threats for MANETs. A black hole is a security attack in which a malicious node absorbs all data packets by sending fake routing information and drops them without forwarding them. In order to defend against a black hole attack, in this paper we propose a new threshold-based black hole attack prevention method using multiple RREPs. To investigate the performance of the proposed method, we compared it with existing methods. Our simulation results show that the proposed method outperforms existing methods from the standpoints of packet delivery rate, throughput, and routing overhead.

Hossain, Sazzat, Hussain, Md. Sazzad, Ema, Romana Rahman, Dutta, Songita, Sarkar, Suborna, Islam, Tajul.  2019.  Detecting Black hole attack by selecting appropriate routes for authentic message passing using SHA-3 and Diffie-Hellman algorithm in AODV and AOMDV routing protocols in MANET. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—7.
Ad hoc network is sensitive to attacks because it has temporary nature and frequently recognized insecure environment. Both Ad hoc On-demand Distance Vector (AODV) and Ad hoc On-demand Multipath Distance vector (AOMDV) routing protocols have the strategy to take help from Wireless and mobile ad hoc networks. A mobile ad hoc network (MANET) is recognized as an useful internet protocol and where the mobile nodes are self-configuring and self-organizing in character. This research paper has focused on the detection and influence of black hole attack on the execution of AODV and AOMDV routing protocols and has also evaluated the performance of those two on-demand routing protocols in MANETs. AODV has the characteristics for discovering a single path in single route discovery and AOMDV has the characteristics for discovering multiple paths in single route discovery. Here a proposed method for both AODV and AOMDV routing protocol, has been applied for the detection of the black hole attack, which is the merge of both SHA-3 and Diffie-Hellman algorithm. This merge technique has been applied to detect black hole attack in MANET. This technique has been applied to measure the performance matrices for both AODV and AOMDV and those performance matrices are Average Throughput, Average End to End delay and Normalized Routing Load. Both AODV and AOMDV routing protocol have been compared with each other to show that under black hole attack, AOMDV protocol always has better execution than AODV protocol. Here, NS-2.35 has been used as the Network Simulator tool for the simulation of these particular three types of performance metrics stated above.
Gayathri, S, Seetharaman, R., Subramanian, L.Harihara, Premkumar, S., Viswanathan, S., Chandru, S..  2019.  Wormhole Attack Detection using Energy Model in MANETs. 2019 2nd International Conference on Power and Embedded Drive Control (ICPEDC). :264—268.
The mobile ad-hoc networks comprised of nodes that are communicated through dynamic request and also by static table driven technique. The dynamic route discovery in AODV routing creates an unsecure transmission as well as reception. The reason for insecurity is the route request is given to all the nodes in the network communication. The possibility of the intruder nodes are more in the case of dynamic route request. Wormhole attacks in MANETs are creating challenges in the field of network analysis. In this paper the wormhole scenario is realized using high power transmission. This is implemented using energy model of ns2 simulator. The Apptool simulator identifies the energy level of each node and track the node of high transmission power. The performance curves for throughput, node energy for different encrypted values, packet drop ratio, and end to end delay are plotted.
2020-08-03
Seetharaman, R., Subramaniam, L.Harihara, Ramanathan, S..  2019.  Mobile Ad Hoc Network for Security Enhancement. 2019 2nd International Conference on Power and Embedded Drive Control (ICPEDC). :279–282.

This project enhances the security in which Ad Hoc On-Demand Distance Vector (AODV) routing protocol for MANETs with the game theoretical approach. This is achieved by using public key and private key for encryption and decryption processes. Proactive and reactive method is implemented in the proposed system. Reactive method is done in identification process but in proactive method is used to identify the nodes and also block the hackers node, then change the direction of data transmission to good nodes. This application can be used in military, research, confidential and emergency circumferences.

2020-06-01
Aziz, Nooralhuda waheed, Alsaad, Saad Najim, Hmood, Haider kadhum.  2019.  Implementation of Lightweight Stream Cipher in AODV Routing Protocol for MANET. 2019 First International Conference of Computer and Applied Sciences (CAS). :210—215.

The growing use of MANETs and its vulnerability to attacks due to its fundamental characteristics make secure routing one of the most considerable challenges. In this paper, a new security scheme for mobile ad hoc networks (MANETs) is presented. The proposed scheme used Trivium lightweight stream cipher algorithm in combination with HMAC to secure the routing control packets. This paper compares the performance of the AODV after implementing the security scheme in terms of throughput, delay sum (end-to-end), jitter sum (end-to-end) and packet loss ratio. The proposed scheme shows better performance than original AODV under blackhole attack.

Sivanesh, S., Sarma Dhulipala, V.R..  2019.  Comparitive Analysis of Blackhole and Rushing Attack in MANET. 2019 TEQIP III Sponsored International Conference on Microwave Integrated Circuits, Photonics and Wireless Networks (IMICPW). :495—499.

For the past few decades, mobile ad hoc networks (MANETs) have been a global trend in wireless networking technology. These kind of ad-hoc networks are infrastructure less, dynamic in topology and further doesn't have a centralized network administration which makes it easier for the intruders to launch several attacks on MANETs. In this paper, we have made a comparative analysis of the network layer attack by simulating rushing and black hole attack using NS-2 network simulator. For determining the most vulnerable attack we have considered packet delivery ratio, end to end delay and throughput as a evaluation metrices. Here, AODV routing protocol has been configured for data forwarding operations. From our Simulation result, it is evident that the black hole attack is more vulnerable when compared to the rushing attack.

2020-05-26
Tripathi, Shripriya.  2019.  Performance Analysis of AODV and DSR Routing Protocols of MANET under Wormhole Attack and a Suggested Trust Based Routing Algorithm for DSR. 2019 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE). :1–5.

The nodes in Mobile Ad hoc Network (MANET) can self-assemble themselves, locomote unreservedly and can interact with one another without taking any help from a centralized authority or fixed infrastructure. Due to its continuously changing and self-organizing nature, MANET is vulnerable to a variety of attacks like spoofing attack, wormhole attack, black hole attack, etc. This paper compares and analyzes the repercussion of the wormhole attack on MANET's two common routing protocols of reactive category, specifically, Dynamic Source Routing (DSR) and Ad-hoc On-Demand Distance Vector (AODV) by increasing the number of wormhole tunnels in MANET. The results received by simulation will reveal that DSR is greatly affected by this attack. So, as a solution, a routing algorithm for DSR which is based on trust is proposed to prevent the routes from caching malicious nodes.

Kumari, Alpana, Krishnan, Shoba.  2019.  Analysis of Malicious Behavior of Blackhole and Rushing Attack in MANET. 2019 International Conference on Nascent Technologies in Engineering (ICNTE). :1–6.

Mobile Adhoc Network (MANET) are the networks where network nodes uses wireless links to transfer information from one node to another without making use of existing infrastructure. There is no node in the network to control and coordinate establishment of connections between the network nodes. Hence the network nodes performs dual function of both node as well as router. Due to dynamically changing network scenarios, absence of centralization and lack of resources, MANETs have a threat of large number of security attacks. Hence security attacks need to be evaluated in order to find effective methods to avoid or remove them. In this paper malicious behavior of Blackhole attack and Rushing attack is studied and analyzed for QoS metrics.

V S, Deepthi, S, Vagdevi.  2018.  Behaviour Analysis and Detection of Blackhole Attacker Node under Reactive Routing Protocol in MANETs. 2018 International Conference on Networking, Embedded and Wireless Systems (ICNEWS). :1–5.
Mobile Adhoc networks are wireless adhoc networks that have property of self organizing, less infrastructure, multi hoping, which are designed to work under low power vulnerable environment. Due to its very unique characteristics, there is much chances of threat of malicious nodes within the network. Blackhole attack is a menace in MANETs which redirects all traffic to itself and drops it. This paper’s objective is to analyze the effects of blackhole attack under reactive routing protocol such as Adhoc on Demand Distance Vector routing (AODV). The performance of this protocol is assessed to find the vulnerability of attack and also compared the impact of attack on both AODV, AODV with blackhole and proposed AODV protocols. The analysis is done by simulated using NS- 2.35 and QoS parameters such as Throughput, PDR, and Average Energy Consumed are measured further.
Kumari, Alpana, Krishnan, Shoba.  2018.  Simulation Based Study of Blackhole Attack Under AODV Protocol. 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA). :1–6.
Mobile adhoc network are fully autonomous where the nodes act both as node as well as router. Centralization is absent in MANETs. In MANETs nodes are continuously moving and have an open access which put it at a risk of large number of attacks. Security in such networks is therefore a critical matter. In order to find solution to this issue various attacks need to be studied and analyzed. In Blackhole attack, the unauthorized node in the path of source and target nodes takes away the packets sent by the source and drops them by not heading them towards the target node. The malicious behavior launched by Blackhole attack deteriorates the network performance.
Li, Guoquan, Yan, Zheng, Fu, Yulong.  2018.  A Study and Simulation Research of Blackhole Attack on Mobile AdHoc Network. 2018 IEEE Conference on Communications and Network Security (CNS). :1–6.
Mobile ad hoc network (MANET) is a kind of mobile multi-hop network which can transmit data through intermediate nodes, it has been widely used and become important since the growing of the market of Internet of Things (IoT). However, the transmissions on MANET are vulnerable, it usually suffered with many internal or external attacks, and the research on security topics of MANET are becoming more and more hot recently. Blackhole Attack is one of the most famous attacks to MANET. In this paper, we focus on the Blackhole Attack in AODV protocol, and use NS-3 network simulator to study the impact of Blackhole Attack on network performance parameters, such as the Throughput, End-to-End Delay and Packet Loss Rate. We further analyze the changes in network performance by adjusting the number of blackhole nodes and total nodes, and the movement speed of mobile nodes. The experimental results not only reflect the behaviors of the Blackhole Attack and its damage to the network, but also provide the characteristics of Blackhole Attacks clearly. This is helpful to the research of Blackhole Attack feature extraction and MANET security measurement.
2020-03-09
Singh, Moirangthem Marjit, Mandal, Jyotsna Kumar.  2019.  Gray Hole Attack Analysis in AODV Based Mobile Adhoc Network with Reliability Metric. 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS). :565–569.

The increasing demand and the use of mobile ad hoc network (MANET) in recent days have attracted the attention of researchers towards pursuing active research work largely related to security attacks in MANET. Gray hole attack is one of the most common security attacks observed in MANET. The paper focuses on gray hole attack analysis in Ad hoc on demand distance vector(AODV) routing protocol based MANET with reliability as a metric. Simulation is performed using ns-2.35 simulation software under varying number of network nodes and varying number of gray hole nodes. Results of simulation indicates that increasing the number of gray hole node in the MANET will decrease the reliability of MANET.

2019-01-21
Sangeetha, V., Kumar, S. S..  2018.  Detection of malicious node in mobile ad-hoc network. 2018 International Conference on Power, Signals, Control and Computation (EPSCICON). :1–3.

In recent years, the area of Mobile Ad-hoc Net-work(MANET) has received considerable attention among the research community owing to the advantages in its networking features as well as solving the unsolved issues in it. One field which needs more security is the mobile ad hoc network. Mobile Ad-hoc Network is a temporary network composed of mobile nodes, connected by wireless links, without fixed infrastructure. Network security plays a crucial role in this MANET and the traditional way of protecting the networks through firewalls and encryption software is no longer effective and sufficient. In order to provide additional security to the MANET, intrusion detection mechanisms should be added. In this paper, selective acknowledgment is used for detecting malicious nodes in the Mobile ad-hoc network is proposed. In this paper we propose a novel mechanism called selective acknowledgment for solving problems that airse with Adaptive ACKnowledgment (AACK). This mechanism is an enhancement to the AACK scheme where its Packet delivery ration and detection overhead is reduced. NS2 is used to simulate and evaluate the proposed scheme and compare it against the AACK. The obtained results show that the selective acknowledgment scheme outperforms AACK in terms of network packet delivery ratio and routing overhead.