Visible to the public Biblio

Filters: Keyword is AODV  [Clear All Filters]
Sangeetha, V., Kumar, S. S..  2018.  Detection of malicious node in mobile ad-hoc network. 2018 International Conference on Power, Signals, Control and Computation (EPSCICON). :1–3.

In recent years, the area of Mobile Ad-hoc Net-work(MANET) has received considerable attention among the research community owing to the advantages in its networking features as well as solving the unsolved issues in it. One field which needs more security is the mobile ad hoc network. Mobile Ad-hoc Network is a temporary network composed of mobile nodes, connected by wireless links, without fixed infrastructure. Network security plays a crucial role in this MANET and the traditional way of protecting the networks through firewalls and encryption software is no longer effective and sufficient. In order to provide additional security to the MANET, intrusion detection mechanisms should be added. In this paper, selective acknowledgment is used for detecting malicious nodes in the Mobile ad-hoc network is proposed. In this paper we propose a novel mechanism called selective acknowledgment for solving problems that airse with Adaptive ACKnowledgment (AACK). This mechanism is an enhancement to the AACK scheme where its Packet delivery ration and detection overhead is reduced. NS2 is used to simulate and evaluate the proposed scheme and compare it against the AACK. The obtained results show that the selective acknowledgment scheme outperforms AACK in terms of network packet delivery ratio and routing overhead.

Adeniji, V. O., Sibanda, K..  2018.  Analysis of the effect of malicious packet drop attack on packet transmission in wireless mesh networks. 2018 Conference on Information Communications Technology and Society (ICTAS). :1–6.
Wireless mesh networks (WMNs) are known for possessing good attributes such as low up-front cost, easy network maintenance, and reliable service coverage. This has largely made them to be adopted in various environments such as; school campus networks, community networking, pervasive healthcare, office and home automation, emergency rescue operations and ubiquitous wireless networks. The routing nodes are equipped with self-organized and self-configuring capabilities. However, the routing mechanisms of WMNs depend on the collaboration of all participating nodes for reliable network performance. The authors of this paper have noted that most routing algorithms proposed for WMNs in the last few years are designed with the assumption that all the participating nodes will collaboratively be involved in relaying the data packets originated from a source to a multi-hop destination. Such design approach however exposes WMNs to vulnerability such as malicious packet drop attack. This paper presents an evaluation of the effect of the black hole attack with other influential factors in WMNs. In this study, NS-3 simulator was used with AODV as the routing protocol. The results show that the packet delivery ratio and throughput of WMN under attack decreases sharply as compared to WMN free from attack. On an average, 47.41% of the transmitted data packets were dropped in presence of black hole attack.
Gurung, S., Chauhan, S..  2017.  A review of black-hole attack mitigation techniques and its drawbacks in Mobile Ad-hoc Network. 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). :2379–2385.

Mobile Ad-hoc Network (MANET) is a prominent technology in the wireless networking field in which the movables nodes operates in distributed manner and collaborates with each other in order to provide the multi-hop communication between the source and destination nodes. Generally, the main assumption considered in the MANET is that each node is trusted node. However, in the real scenario, there are some unreliable nodes which perform black hole attack in which the misbehaving nodes attract all the traffic towards itself by giving false information of having the minimum path towards the destination with a very high destination sequence number and drops all the data packets. In the paper, we have presented different categories for black hole attack mitigation techniques and also presented the summary of various techniques along with its drawbacks that need to be considered while designing an efficient protocol.

Kamel, M. B. M., Alameri, I., Onaizah, A. N..  2017.  STAODV: A secure and trust based approach to mitigate blackhole attack on AODV based MANET. 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :1278–1282.

Mobile ad hoc networks (MANET) is a type of networks that consists of autonomous nodes connecting directly without a top-down network architecture or central controller. Absence of base stations in MANET force the nodes to rely on their adjacent nodes in transmitting messages. The dynamic nature of MANET makes the relationship between nodes untrusted due to mobility of nodes. A malicious node may start denial of service attack at network layer to discard the packets instead of forwarding them to destination which is known as black hole attack. In this paper a secure and trust based approach based on ad hoc on demand distance vector (STAODV) has been proposed to improve the security of AODV routing protocol. The approach isolates the malicious nodes that try to attack the network depending on their previous information. A trust level is attached to each participating node to detect the level of trust of that node. Each incoming packet will be examined to prevent the black hole attack.

Sasirekha, D., Radha, N..  2017.  Secure and attack aware routing in mobile ad hoc networks against wormhole and sinkhole attacks. 2017 2nd International Conference on Communication and Electronics Systems (ICCES). :505–510.

The inherent characteristics of Mobile Ad hoc network (MANET) such as dynamic topology, limited bandwidth, limited power supply, infrastructure less network make themselves attractive for a wide spectrum of applications and vulnerable to security attacks. Sinkhole attack is the most disruptive routing layer attack. Sinkhole nodes attract all the traffic towards them to setup further active attacks such as Black hole, Gray hole and wormhole attacks. Sinkhole nodes need to be isolated from the MANET as early as possible. In this paper, an effective mechanism is proposed to prevent and detect sinkhole and wormhole attacks in MANET. The proposed work detects and punishes the attacker nodes using different techniques such as node collusion technique, which classifies a node as an attacker node only with the agreement with the neighboring nodes. When the node suspects the existence of attacker or sinkhole node in the path, it joins together with neighboring nodes to determine the sinkhole node. In the prevention of routing attacks, the proposed system introduces a route reserve method; new routes learnt are updated in the routing table of the node only after ensuring that the route does not contain the attacker nodes. The proposed system effectively modifies Ad hoc on demand Distance Vector (AODV) with the ability to detect and prevent the sinkhole and wormhole attack, so the modified protocol is named as Attack Aware Alert (A3AODV). The experiments are carried out in NS2 simulator, and the result shows the efficiency in terms of packet delivery ratio and routing overhead.

Saurabh, V. K., Sharma, R., Itare, R., Singh, U..  2017.  Cluster-based technique for detection and prevention of black-hole attack in MANETs. 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA). 2:489–494.

Secure routing in the field of mobile ad hoc network (MANET) is one of the most flourishing areas of research. Devising a trustworthy security protocol for ad hoc routing is a challenging task due to the unique network characteristics such as lack of central authority, rapid node mobility, frequent topology changes, insecure operational environment, and confined availability of resources. Due to low configuration and quick deployment, MANETs are well-suited for emergency situations like natural disasters or military applications. Therefore, data transfer between two nodes should necessarily involve security. A black-hole attack in the mobile ad-hoc network (MANET) is an offense occurring due to malicious nodes, which attract the data packets by incorrectly publicizing a fresh route to the destination. A clustering direction in AODV routing protocol for the detection and prevention of black-hole attack in MANET has been put forward. Every member of the unit will ping once to the cluster head, to detect the exclusive difference between the number of data packets received and forwarded by the particular node. If the fault is perceived, all the nodes will obscure the contagious nodes from the network. The reading of the system performance has been done in terms of packet delivery ratio (PDR), end to end delay (ETD) throughput and Energy simulation inferences are recorded using ns2 simulator.

Yadav, S., Trivedi, M. C., Singh, V. K., Kolhe, M. L..  2017.  Securing AODV routing protocol against black hole attack in MANET using outlier detection scheme. 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON). :1–4.

Imposing security in MANET is very challenging and hot topic of research science last two decades because of its wide applicability in applications like defense. Number of efforts has been made in this direction. But available security algorithms, methods, models and framework may not completely solve this problem. Motivated from various existing security methods and outlier detection, in this paper novel simple but efficient outlier detection scheme based security algorithm is proposed to protect the Ad hoc on demand distance vector (AODV) reactive routing protocol from Black hole attack in mobile ad hoc environment. Simulation results obtained from network simulator tool evident the simplicity, robustness and effectiveness of the proposed algorithm over the original AODV protocol and existing methods.

Dhende, S., Musale, S., Shirbahadurkar, S., Najan, A..  2017.  SAODV: Black hole and gray hole attack detection protocol in MANETs. 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). :2391–2394.

A MANET is a group of wireless mobile nodes which cooperate in forwarding packets over a wireless links. Due to the lack of an infrastructure and open nature of MANET, security has become an essential and challenging issue. The mobile nature and selfishness of malicious node is a critical issue in causing the security problem. The MANETs are more defenseless to the security attacks; some of them are black hole and gray hole attacks. One of its key challenges is to find black hole attack. In this paper, researchers propose a secure AODV protocol (SAODV) for detection and removal of black hole and gray hole attacks in MANTEs. The proposed method is simulated using NS-2 and it seems that the proposed methodology is more secure than the existing one.

Martin-Escalona, I., Perrone, F., Zola, E., Barcelo-Arroyo, F..  2017.  Impact of unreliable positioning in location-based routing protocols for MANETs. 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). :1534–1539.

MANETs have been focusing the interest of researchers for several years. The new scenarios where MANETs are being deployed make that several challenging issues remain open: node scalability, energy efficiency, network lifetime, Quality of Service (QoS), network overhead, data privacy and security, and effective routing. This latter is often seen as key since it frequently constrains the performance of the overall network. Location-based routing protocols provide a good solution for scalable MANETs. Although several location-based routing protocols have been proposed, most of them rely on error-free positions. Only few studies have focused so far on how positioning error affects the routing performance; also, most of them consider outdated solutions. This paper is aimed at filling this gap, by studying the impact of the error in the position of the nodes of two location-based routing protocols: DYMOselfwd and AODV-Line. These protocols were selected as they both aim at reducing the routing overhead. Simulations considering different mobility patterns in a dense network were conducted, so that the performance of these protocols can be assessed under ideal (i.e. error-less) and realistic (i.e. with error) conditions. The results show that AODV-Line builds less reliable routes than DYMOselfwd in case of error in the position information, thus increasing the routing overhead.

Kolade, Ayanwuyi T., Zuhairi, Megat F., Yafi, Eiad, Zheng, C. L..  2017.  Performance Analysis of Black Hole Attack in MANET. Proceedings of the 11th International Conference on Ubiquitous Information Management and Communication. :1:1–1:7.

The underlying element that supports the device communication in the MANET is the wireless connection capability. Each node has the ability to communicate with other nodes via the creation of routing path. However, due to the fact that nodes in MANET are autonomous and the routing paths created are only based on current condition of the network, some of the paths are extremely instable. In light of these shortcomings, many research works emphasizes on the improvement of routing path algorithm. Regardless of the application the MANET can support, the MANET possesses unique characteristics, which enables mobile nodes to form dynamic communication irrespective the availability of a fixed network. However the inherent nature of MANET has led to nodes in MANET to be vulnerable to denied services. A typical Denial of Service (DoS) in MANET is the Black Hole attack, caused by a malicious node, or a set of nodes advertising false routing updates. Typically, the malicious nodes are difficult to be detected. Each node is equipped with a particular type of routing protocol and voluntarily participates in relaying the packets. However, some nodes may not be genuine and has been tampered to behave maliciously, which causes the Black Hole attack. Several on demand routing protocol e.g. Ad hoc On Demand Distance Vector (AODV) and Dynamic Source Routing (DSR) are susceptible to such attack. In principle, the attack exploits the Route Request (RREQ) discovery operation and falsifies the sequence number and the shortest path information. The malicious nodes are able to utilize the loophole in the RREQ discovery process due to the absence of validation process. As a result, genuine RREQ packets are exploited and erroneously relayed to a false node(s). This paper highlights the effect Black Hole nodes to the network performance and therefore substantiates the previous work done [1]. In this paper, several simulation experiments are iterated using NS-2, which employed various scenarios and traffic loads. The simulation results show the presence of Black Hole nodes in a network can substantially affects the packet delivery ratio and throughput by as much as 100%.

Joshi, V. B., Goudar, R. H..  2017.  Intrusion detection systems in MANETs using hybrid techniques. 2017 International Conference On Smart Technologies For Smart Nation (SmartTechCon). :534–538.

The use of self organized wireless technologies called as Mobile Ad Hoc Networks (MANETs) has increased and these wireless devices can be deployed anywhere without any infrastructural support or without any base station, hence securing these networks and preventing from Intrusions is necessary. This paper describes a method for securing the MANETs using Hybrid cryptographic technique which uses RSA and AES algorithm along with SHA 256 Hashing technique. This hybrid cryptographic technique provides authentication to the data. To check whether there is any malicious node present, an Intrusion Detection system (IDS) technique called Enhanced Adaptive Acknowledgement (EAACK) is used, which checks for the acknowledgement packets to detect any malicious node present in the system. The routing of packets is done through two protocols AODV and ZRP and both the results are compared. The ZRP protocol when used for routing provides better performance as compared to AODV.

Rajan, A., Jithish, J., Sankaran, S..  2017.  Sybil attack in IOT: Modelling and defenses. 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI). :2323–2327.

Internet of Things (IoT) is an emerging paradigm in information technology (IT) that integrates advancements in sensing, computing and communication to offer enhanced services in everyday life. IoTs are vulnerable to sybil attacks wherein an adversary fabricates fictitious identities or steals the identities of legitimate nodes. In this paper, we model sybil attacks in IoT and evaluate its impact on performance. We also develop a defense mechanism based on behavioural profiling of nodes. We develop an enhanced AODV (EAODV) protocol by using the behaviour approach to obtain the optimal routes. In EAODV, the routes are selected based on the trust value and hop count. Sybil nodes are identified and discarded based on the feedback from neighbouring nodes. Evaluation of our protocol in ns-2 simulator demonstrates the effectiveness of our approach in identifying and detecting sybil nodes in IoT network.

Mayadunna, H., Silva, S. L. De, Wedage, I., Pabasara, S., Rupasinghe, L., Liyanapathirana, C., Kesavan, K., Nawarathna, C., Sampath, K. K..  2017.  Improving Trusted Routing by Identifying Malicious Nodes in a MANET Using Reinforcement Learning. 2017 Seventeenth International Conference on Advances in ICT for Emerging Regions (ICTer). :1–8.

Mobile ad-hoc networks (MANETs) are decentralized and self-organizing communication systems. They have become pervasive in the current technological framework. MANETs have become a vital solution to the services that need flexible establishments, dynamic and wireless connections such as military operations, healthcare systems, vehicular networks, mobile conferences, etc. Hence it is more important to estimate the trustworthiness of moving devices. In this research, we have proposed a model to improve a trusted routing in mobile ad-hoc networks by identifying malicious nodes. The proposed system uses Reinforcement Learning (RL) agent that learns to detect malicious nodes. The work focuses on a MANET with Ad-hoc On-demand Distance Vector (AODV) Protocol. Most of the systems were developed with the assumption of a small network with limited number of neighbours. But with the introduction of reinforcement learning concepts this work tries to minimize those limitations. The main objective of the research is to introduce a new model which has the capability to detect malicious nodes that decrease the performance of a MANET significantly. The malicious behaviour is simulated with black holes that move randomly across the network. After identifying the technology stack and concepts of RL, system design was designed and the implementation was carried out. Then tests were performed and defects and further improvements were identified. The research deliverables concluded that the proposed model arranges for highly accurate and reliable trust improvement by detecting malicious nodes in a dynamic MANET environment.

Hinge, Rashmi, Dubey, Jigyasu.  2016.  Opinion Based Trusted AODV Routing Protocol for MANET. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :126:1–126:5.

Mobile ad hoc network is one of the popular network technology used for rapid deployment in critical situations. Because the nature of network is ad hoc therefore a number of issues exist. In order to investigate the security in mobile ad hoc network a number of research articles are explored and it is observed that most of the attacks are deployed on the basis of poor routing methodology. For providing the security in the ad hoc networks an opinion based trust model is proposed which is working on the basis of the network properties. In this model two techniques are used one is trust calculation that helps in finding most trustworthy node and other is opinion evaluation by which most secure route to the destination is obtained. By the experimental outcomes the results are compared with the traditional approach of trust based security. According to the obtained results the performance of the network becomes efficient in all the evaluated parameters as compared to the traditional technique. Thus proposed model is more adoptable for secure routing in MANET.

Patidar, Divya, Dubey, Jigyasu.  2016.  A Hybrid Approach for Dynamic Intrusion Detection, Enhancement of Performance and Security in MANET. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :81:1–81:5.

Mobile ad hoc networking (MANET) has been most popular research area for last decade. In MANET node (mobile node) is communicate with each other over wireless link where all nodes behave like both as host and router. In comparison with wired networks, mobile network is more vulnerable to security threat because of no centralized administration. One of the momentous routing protocols used in MANET is AODV (Ad hoc On demand Distance Vector) protocol. The Ad hoc On demand Distance Vector (AODV) protocol is compromised with its security by a various types of attacks due to malicious nodes present in the network. A hybrid approach is given for intrusion detection by removing malicious nodes during the route discovery process. The proposed approach increases the network performance in terms of PDR, throughput and end to end delay and security also.

Chaudhary, Rashmi, Ragiri, Prakash Rao.  2016.  Implementation and Analysis of Blackhole Attack in AODV Routing Protocol. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :112:1–112:5.

MANET (Mobile ad-hoc network) is a wireless network. Several mobile nodes are present in MANET. It has various applications ranging from military to remote area communication. Several routing protocols are designed for routing of the packets in the network. AODV (ad hoc on demand vector) is one such protocol. Since, nodes are mobile in the network, security is a main concern. Blackhole attack is a network layer attack that tries to hamper the routing process. In this attack the data packets are dropped. The paper focuses on the analysis of AODV routing protocol under blackhole attack. First we have implemented blackhole attack in AODV and then analyzed the impact of blackhole attack on AODV under metrics like throughput, end to end delay and packet delivery fraction.

Mudgal, Richa, Gupta, Rohit.  2016.  An Efficient Approach for Wormhole Detection in MANET. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :29:1–29:6.

A MANET is a collection of self-configured node connected with wireless links. Each node of a mobile ad hoc network acts as a router and finds out a suitable route to forward a packet from source to destination. This network is applicable in areas where establishment of infrastructure is not possible, such as in the military environment. Along with the military environment MANET is also used in civilian environment such as sports stadiums, meeting room. The routing functionality of each node is cause of many security threats on routing. In this paper addressed the problem of identifying and isolating wormhole attack that refuse to forward packets in wireless mobile ad hoc network. The impact of this attack has been shown to be detrimental to network performance, lowering the packet delivery ratio and dramatically increasing the end-to-end delay. Proposed work suggested the efficient and secure routing in MANET. Using this approach of buffer length and RTT calculation, routing overhead minimizes. This research is based on detection and prevention of wormhole attacks in AODV. The proposed protocol is simulated using NS-2 and its performance is compared with the standard AODV protocol. The statistical analysis shows that modified AODV protocol detects wormhole attack efficiently and provides secure and optimum path for routing.

Rmayti, M., Begriche, Y., Khatoun, R., Khoukhi, L., Gaiti, D..  2015.  Flooding attacks detection in MANETs. 2015 International Conference on Cyber Security of Smart Cities, Industrial Control System and Communications (SSIC). :1–6.

Flooding attacks are well-known security threats that can lead to a denial of service (DoS) in computer networks. These attacks consist of an excessive traffic generation, by which an attacker aim to disrupt or interrupt some services in the network. The impact of flooding attacks is not just about some nodes, it can be also the whole network. Many routing protocols are vulnerable to these attacks, especially those using reactive mechanism of route discovery, like AODV. In this paper, we propose a statistical approach to defense against RREQ flooding attacks in MANETs. Our detection mechanism can be applied on AODV-based ad hoc networks. Simulation results prove that these attacks can be detected with a low rate of false alerts.

Soleimani, M.T., Kahvand, M..  2014.  Defending packet dropping attacks based on dynamic trust model in wireless ad hoc networks. Mediterranean Electrotechnical Conference (MELECON), 2014 17th IEEE. :362-366.

Rapid advances in wireless ad hoc networks lead to increase their applications in real life. Since wireless ad hoc networks have no centralized infrastructure and management, they are vulnerable to several security threats. Malicious packet dropping is a serious attack against these networks. In this attack, an adversary node tries to drop all or partial received packets instead of forwarding them to the next hop through the path. A dangerous type of this attack is called black hole. In this attack, after absorbing network traffic by the malicious node, it drops all received packets to form a denial of service (DOS) attack. In this paper, a dynamic trust model to defend network against this attack is proposed. In this approach, a node trusts all immediate neighbors initially. Getting feedback from neighbors' behaviors, a node updates the corresponding trust value. The simulation results by NS-2 show that the attack is detected successfully with low false positive probability.

Sakharkar, S.M., Mangrulkar, R.S., Atique, M..  2014.  A survey: A secure routing method for detecting false reports and gray-hole attacks along with Elliptic Curve Cryptography in wireless sensor networks. Electrical, Electronics and Computer Science (SCEECS), 2014 IEEE Students' Conference on. :1-5.

Wireless Sensor Networks (WSNs) are used in many applications in military, environmental, and health-related areas. These applications often include the monitoring of sensitive information such as enemy movement on the battlefield or the location of personnel in a building. Security is important in WSNs. However, WSNs suffer from many constraints, including low computation capability, small memory, limited energy resources, susceptibility to physical capture, and the use of insecure wireless communication channels. These constraints make security in WSNs a challenge. In this paper, we try to explore security issue in WSN. First, the constraints, security requirements and attacks with their corresponding countermeasures in WSNs are explained. Individual sensor nodes are subject to compromised security. An adversary can inject false reports into the networks via compromised nodes. Furthermore, an adversary can create a Gray hole by compromised nodes. If these two kinds of attacks occur simultaneously in a network, some of the existing methods fail to defend against those attacks. The Ad-hoc On Demand Distance (AODV) Vector scheme for detecting Gray-Hole attack and Statistical En-Route Filtering is used for detecting false report. For increasing security level, the Elliptic Curve Cryptography (ECC) algorithm is used. Simulations results obtain so far reduces energy consumption and also provide greater network security to some extent.

Dhurandher, S.K., Woungang, I., Traore, I..  2014.  C-SCAN: An Energy-Efficient Network Layer Security Protocol for Mobile Ad Hoc Networks. Advanced Information Networking and Applications Workshops (WAINA), 2014 28th International Conference on. :530-535.

This paper continues the investigation of our recently proposed protocol (called E2-SCAN) designed for protecting against network layer attacks in mobile ad hoc networks. The enhancements of the E2-SCAN protocol are twofold: (1) a modified credit strategy for tokens renewal is introduced, and (2) a novel strategy for selecting the routing path, resulting to our so-called Conditional SCAN (CSCAN). Simulation experiments are conducted, establishing the superiority of C-SCAN over E2-SCAN in terms of energy efficiency, where the energy efficiency of a node is defined as the ratio of the amount of energy consumed by the node to the total energy consumed by the network.

Vijayan, A., Thomas, T..  2014.  Anonymity, unlinkability and unobservability in mobile ad hoc networks. Communications and Signal Processing (ICCSP), 2014 International Conference on. :1880-1884.

Mobile ad hoc networks have the features of open medium, dynamic topology, cooperative algorithms, lack of centralized monitoring etc. Due to these, mobile ad hoc networks are much vulnerable to security attacks when compared to wired networks. There are various routing protocols that have been developed to cope up with the limitations imposed by the ad hoc networks. But none of these routing schemes provide complete unlinkability and unobservability. In this paper we have done a survey about anonymous routing and secure communications in mobile ad hoc networks. Different routing protocols are analyzed based on public/private key pairs and cryptosystems, within that USOR can well protect user privacy against both inside and outside attackers. It is a combination of group signature scheme and ID based encryption scheme. These are run during the route discovery process. We implement USOR on ns2, and then its performance is compared with AODV.