Visible to the public Biblio

Filters: Keyword is Oscillating Water Column (OWC)  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
H
M'zoughi, Fares, Bouallègue, Soufiene, Ayadi, Mounir, Garrido, Aitor J., Garrido, Izaskun.  2018.  Harmony search algorithm-based airflow control of an oscillating water column-based wave generation power plants. 2018 International Conference on Advanced Systems and Electric Technologies (IC\_ASET). :249—254.

The NEREIDA wave generation power plant installed in Mutriku, Spain is a multiple Oscillating Water Column (OWC) plant. The power takeoff consists of a Wells turbine coupled to a Doubly Fed Induction Generator (DFIG). The stalling behavior present in the Wells turbine limits the generated power. This paper presents the modeling and a Harmony Search Algorithm-based airflow control of the OWC. The Harmony Search Algorithm (HSA) is proposed to help overcome the limitations of a traditionally tuned PID. An investigation between HSA-tuned controller and the traditionally tuned controller has been performed. Results of the controlled and uncontrolled plant prove the effectiveness of the airflow control and the superiority of the HSA-tuned controller.

S
M'zoughi, Fares, Garrido, Aitor J., Garrido, Izaskun, Bouallègue, Soufiene, Ayadi, Mounir.  2018.  Sliding Mode Rotational Speed Control of an Oscillating Water Column-based Wave Generation Power Plants. 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). :1263—1270.

This paper deals with the modeling and control of the NEREIDA wave generation power plant installed in Mutriku, Spain. This kind of Oscillating Water Column (OWC) plants usually employ a Wells turbine coupled to a Doubly Fed Induction Generator (DFIG). The stalling behavior of the Wells turbine limits the generated power. In this context, a sliding mode rotational speed control is proposed to help avoiding this phenomenon. This will regulate the speed by means of the Rotor Side Converter (RSC) of the Back-to-Back converter governing the generator. The results of the comparative study show that the proposed control provides a higher generated power compared to the uncontrolled case.