Visible to the public Biblio

Filters: Keyword is Radar  [Clear All Filters]
Omori, T., Isono, Y., Kondo, K., Akamine, Y., Kidera, S..  2020.  k-Space Decomposition Based Super-resolution Three-dimensional Imaging Method for Millimeter Wave Radar. 2020 IEEE Radar Conference (RadarConf20). :1–6.
Millimeter wave imaging radar is indispensible for collision avoidance of self-driving system, especially in optically blurred visions. The range points migration (RPM) is one of the most promising imaging algorithms, which provides a number of advantages from synthetic aperture radar (SAR), in terms of accuracy, computational complexity, and potential for multifunctional imaging. The inherent problem in the RPM is that it suffers from lower angular resolution in narrower frequency band even if higher frequency e.g. millimeter wave, signal is exploited. To address this problem, the k-space decomposition based RPM has been developed. This paper focuses on the experimental validation of this method using the X-band or millimeter wave radar system, and demonstrated that our method significantly enhances the reconstruction accuracy in three-dimensional images for the two simple spheres and realistic vehicle targets.
Abratkiewicz, K., Gromek, D., Samczynski, P..  2019.  Chirp Rate Estimation and micro-Doppler Signatures for Pedestrian Security Radar Systems. 2019 Signal Processing Symposium (SPSympo). :212—215.

A new approach to micro-Doppler signal analysis is presented in this article. Novel chirp rate estimators in the time-frequency domain were used for this purpose, which provided the chirp rate of micro-Doppler signatures, allowing the classification of objects in the urban environment. As an example verifying the method, a signal from a high-resolution radar with a linear frequency modulated continuous wave (FMCW) recording an echo reflected from a pedestrian was used to validate the proposed algorithms for chirp rate estimation. The obtained results are plotted on saturated accelerograms, giving an additional parameter dedicated for target classification in security systems utilizing radar sensors for target detection.

Allig, C., Leinmüller, T., Mittal, P., Wanielik, G..  2019.  Trustworthiness Estimation of Entities within Collective Perception. 2019 IEEE Vehicular Networking Conference (VNC). :1–8.
The idea behind collective perception is to improve vehicles' awareness about their surroundings. Every vehicle shares information describing its perceived environment by means of V2X communication. Similar to other information shared using V2X communication, collective perception information is potentially safety relevant, which means there is a need to assess the reliability and quality of received information before further processing. Transmitted information may have been forged by attackers or contain inconsistencies e.g. caused by malfunctions. This paper introduces a novel approach for estimating a belief that a pair of entities, e.g. two remote vehicles or the host vehicle and a remote vehicle, within a Vehicular ad hoc Network (VANET) are both trustworthy. The method updates the belief based on the consistency of the data that both entities provide. The evaluation shows that the proposed method is able to identify forged information.
Benzekri, A., Laborde, R., Oglaza, A., Rammal, D., Barrere, F..  2019.  Dynamic security management driven by situations: An exploratory analysis of logs for the identification of security situations. 2019 3rd Cyber Security in Networking Conference (CSNet). :66—72.
Situation awareness consists of "the perception of the elements in the environment within a volume of time and space, the comprehension of their meaning, and the projection of their status in the near future". Being aware of the security situation is then mandatory to launch proper security reactions in response to cybersecurity attacks. Security Incident and Event Management solutions are deployed within Security Operation Centers. Some vendors propose machine learning based approaches to detect intrusions by analysing networks behaviours. But cyberattacks like Wannacry and NotPetya, which shut down hundreds of thousands of computers, demonstrated that networks monitoring and surveillance solutions remain insufficient. Detecting these complex attacks (a.k.a. Advanced Persistent Threats) requires security administrators to retain a large number of logs just in case problems are detected and involve the investigation of past security events. This approach generates massive data that have to be analysed at the right time in order to detect any accidental or caused incident. In the same time, security administrators are not yet seasoned to such a task and lack the desired skills in data science. As a consequence, a large amount of data is available and still remains unexplored which leaves number of indicators of compromise under the radar. Building on the concept of situation awareness, we developed a situation-driven framework, called dynSMAUG, for dynamic security management. This approach simplifies the security management of dynamic systems and allows the specification of security policies at a high-level of abstraction (close to security requirements). This invited paper aims at exposing real security situations elicitation, coming from networks security experts, and showing the results of exploratory analysis techniques using complex event processing techniques to identify and extract security situations from a large volume of logs. The results contributed to the extension of the dynSMAUG solution.
Russell, S., Abdelzaher, T., Suri, N..  2019.  Multi-Domain Effects and the Internet of Battlefield Things. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :724—730.

This paper reviews the definitions and characteristics of military effects, the Internet of Battlefield Things (IoBT), and their impact on decision processes in a Multi-Domain Operating environment (MDO). The aspects of contemporary military decision-processes are illustrated and an MDO Effect Loop decision process is introduced. We examine the concept of IoBT effects and their implications in MDO. These implications suggest that when considering the concept of MDO, as a doctrine, the technological advances of IoBTs empower enhancements in decision frameworks and increase the viability of novel operational approaches and options for military effects.

Ishak, Muhammad Yusry Bin, Ahmad, Samsiah Binti, Zulkifli, Zalikha.  2019.  Iot Based Bluetooth Smart Radar Door System Via Mobile Apps. 2019 1st International Conference on Artificial Intelligence and Data Sciences (AiDAS). :142—145.
{In the last few decades, Internet of things (IOT) is one of the key elements in industrial revolution 4.0 that used mart phones as one of the best technological advances' intelligent device. It allows us to have power over devices without people intervention, either remote or voice control. Therefore, the “Smart Radar Door “system uses a microcontroller and mobile Bluetooth module as an automation of smart door lock system. It is describing the improvement of a security system integrated with an Android mobile phone that uses Bluetooth as a wireless connection protocol and processing software as a tool in order to detect any object near to the door. The mob ile device is required a password as authentication method by using microcontroller to control lock and unlock door remotely. The Bluetooth protocol was chosen as a method of communication between microcontroller and mobile devices which integrated with many Android devices in secured protocol}.
Damghani, H., Hosseinian, H., Damghani, L..  2019.  Investigating Attacks to Improve Security and Privacy in RFID Systems Using the Security Bit Method. 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI). :833–838.

The RFID technology is now widely used and combined with everyday life. RFID Tag is a wireless device used to identify individuals and objects, in fact, it is a combination of the chip and antenna that sends the necessary information to an RFID Reader. On the other hand, an RFID Reader converts received radio waves into digital information and then provides facilities such as sending data to the computer and processing them. Radio frequency identification is a comprehensive processing technology that has led to a revolution in industry and medicine as an alternative to commercial barcodes. RFID Tag is used to tracking commodities and personal assets in the chain stores and even the human body and medical science. However, security and privacy problems have not yet been solved satisfactorily. There are many technical and economic challenges in this direction. In this paper, some of the latest technical research on privacy and security problems has been investigated in radio-frequency identification and security bit method, and it has been shown that in order to achieve this level of individual security, multiple technologies of RFID security development should combine with each other. These solutions should be cheap, efficient, reliable, flexible and long-term.

Kulyk, O., Reinheimer, B. M., Gerber, P., Volk, F., Volkamer, M., Mühlhäuser, M..  2017.  Advancing Trust Visualisations for Wider Applicability and User Acceptance. 2017 IEEE Trustcom/BigDataSE/ICESS. :562–569.
There are only a few visualisations targeting the communication of trust statements. Even though there are some advanced and scientifically founded visualisations-like, for example, the opinion triangle, the human trust interface, and T-Viz-the stars interface known from e-commerce platforms is by far the most common one. In this paper, we propose two trust visualisations based on T-Viz, which was recently proposed and successfully evaluated in large user studies. Despite being the most promising proposal, its design is not primarily based on findings from human-computer interaction or cognitive psychology. Our visualisations aim to integrate such findings and to potentially improve decision making in terms of correctness and efficiency. A large user study reveals that our proposed visualisations outperform T-Viz in these factors.
Dutta, R. G., Guo, Xiaolong, Zhang, Teng, Kwiat, K., Kamhoua, C., Njilla, L., Jin, Y..  2017.  Estimation of safe sensor measurements of autonomous system under attack. 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC). :1–6.
The introduction of automation in cyber-physical systems (CPS) has raised major safety and security concerns. One attack vector is the sensing unit whose measurements can be manipulated by an adversary through attacks such as denial of service and delay injection. To secure an autonomous CPS from such attacks, we use a challenge response authentication (CRA) technique for detection of attack in active sensors data and estimate safe measurements using the recursive least square algorithm. For demonstrating effectiveness of our proposed approach, a car-follower model is considered where the follower vehicle's radar sensor measurements are manipulated in an attempt to cause a collision.
Z. Zhu, M. B. Wakin.  2015.  "Wall clutter mitigation and target detection using Discrete Prolate Spheroidal Sequences". 2015 3rd International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa). :41-45.

We present a new method for mitigating wall return and a new greedy algorithm for detecting stationary targets after wall clutter has been cancelled. Given limited measurements of a stepped-frequency radar signal consisting of both wall and target return, our objective is to detect and localize the potential targets. Modulated Discrete Prolate Spheroidal Sequences (DPSS's) form an efficient basis for sampled bandpass signals. We mitigate the wall clutter efficiently within the compressive measurements through the use of a bandpass modulated DPSS basis. Then, in each step of an iterative algorithm for detecting the target positions, we use a modulated DPSS basis to cancel nearly all of the target return corresponding to previously selected targets. With this basis, we improve upon the target detection sensitivity of a Fourier-based technique.

S. Chen, F. Xi, Z. Liu, B. Bao.  2015.  "Quadrature compressive sampling of multiband radar signals at sub-Landau rate". 2015 IEEE International Conference on Digital Signal Processing (DSP). :234-238.

Sampling multiband radar signals is an essential issue of multiband/multifunction radar. This paper proposes a multiband quadrature compressive sampling (MQCS) system to perform the sampling at sub-Landau rate. The MQCS system randomly projects the multiband signal into a compressive multiband one by modulating each subband signal with a low-pass signal and then samples the compressive multiband signal at Landau-rate with output of compressive measurements. The compressive inphase and quadrature (I/Q) components of each subband are extracted from the compressive measurements respectively and are exploited to recover the baseband I/Q components. As effective bandwidth of the compressive multiband signal is much less than that of the received multiband one, the sampling rate is much less than Landau rate of the received signal. Simulation results validate that the proposed MQCS system can effectively acquire and reconstruct the baseband I/Q components of the multiband signals.

Amin, S., Clark, T., Offutt, R., Serenko, K..  2014.  Design of a cyber security framework for ADS-B based surveillance systems. Systems and Information Engineering Design Symposium (SIEDS), 2014. :304-309.

The need for increased surveillance due to increase in flight volume in remote or oceanic regions outside the range of traditional radar coverage has been fulfilled by the advent of space-based Automatic Dependent Surveillance — Broadcast (ADS-B) Surveillance systems. ADS-B systems have the capability of providing air traffic controllers with highly accurate real-time flight data. ADS-B is dependent on digital communications between aircraft and ground stations of the air route traffic control center (ARTCC); however these communications are not secured. Anyone with the appropriate capabilities and equipment can interrogate the signal and transmit their own false data; this is known as spoofing. The possibility of this type of attacks decreases the situational awareness of United States airspace. The purpose of this project is to design a secure transmission framework that prevents ADS-B signals from being spoofed. Three alternative methods of securing ADS-B signals are evaluated: hashing, symmetric encryption, and asymmetric encryption. Security strength of the design alternatives is determined from research. Feasibility criteria are determined by comparative analysis of alternatives. Economic implications and possible collision risk is determined from simulations that model the United State airspace over the Gulf of Mexico and part of the airspace under attack respectively. The ultimate goal of the project is to show that if ADS-B signals can be secured, the situational awareness can improve and the ARTCC can use information from this surveillance system to decrease the separation between aircraft and ultimately maximize the use of the United States airspace.

Jian Wu, Yongmei Jiang, Gangyao Kuang, Jun Lu, Zhiyong Li.  2014.  Parameter estimation for SAR moving target detection using Fractional Fourier Transform. Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International. :596-599.

This paper proposes an algorithm for multi-channel SAR ground moving target detection and estimation using the Fractional Fourier Transform(FrFT). To detect the moving target with low speed, the clutter is first suppressed by Displace Phase Center Antenna(DPCA), then the signal-to-clutter can be enhanced. Have suppressed the clutter, the echo of moving target remains and can be regarded as a chirp signal whose parameters can be estimated by FrFT. FrFT, one of the most widely used tools to time-frequency analysis, is utilized to estimate the Doppler parameters, from which the moving parameters, including the velocity and the acceleration can be obtained. The effectiveness of the proposed method is validated by the simulation.

Jing Li, Ming Chen.  2014.  On-Road Multiple Obstacles Detection in Dynamical Background. Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2014 Sixth International Conference on. 1:102-105.

Road In this paper, we focus on both the road vehicle and pedestrians detection, namely obstacle detection. At the same time, a new obstacle detection and classification technique in dynamical background is proposed. Obstacle detection is based on inverse perspective mapping and homography. Obstacle classification is based on fuzzy neural network. The estimation of the vanishing point relies on feature extraction strategy, which segments the lane markings of the images by combining a histogram-based segmentation with temporal filtering. Then, the vanishing point of each image is stabilized by means of a temporal filtering along the estimates of previous images. The IPM image is computed based on the stabilized vanishing point. The method exploits the geometrical relations between the elements in the scene so that obstacle can be detected. The estimated homography of the road plane between successive images is used for image alignment. A new fuzzy decision fusion method with fuzzy attribution for obstacle detection and classification application is described. The fuzzy decision function modifies parameters with auto-adapted algorithm to get better classification probability. It is shown that the method can achieve better classification result.