Visible to the public Biblio

Filters: Keyword is software maintenance  [Clear All Filters]
Trunov, Artem S., Voronova, Lilia I., Voronov, Vyacheslav I., Ayrapetov, Dmitriy P..  2018.  Container Cluster Model Development for Legacy Applications Integration in Scientific Software System. 2018 IEEE International Conference "Quality Management, Transport and Information Security, Information Technologies" (IT QM IS). :815–819.
Feature of modern scientific information systems is their integration with computing applications, providing distributed computer simulation and intellectual processing of Big Data using high-efficiency computing. Often these software systems include legacy applications in different programming languages, with non-standardized interfaces. To solve the problem of applications integration, containerization systems are using that allow to configure environment in the shortest time to deploy software system. However, there are no such systems for computer simulation systems with large number of nodes. The article considers the actual task of combining containers into a cluster, integrating legacy applications to manage the distributed software system MD-SLAG-MELT v.14, which supports high-performance computing and visualization of the computer experiments results. Testing results of the container cluster including automatic load sharing module for MD-SLAG-MELT system v.14. are given.
Khatchadourian, R., Tang, Y., Bagherzadeh, M., Ahmed, S..  2019.  Safe Automated Refactoring for Intelligent Parallelization of Java 8 Streams. 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). :619-630.

Streaming APIs are becoming more pervasive in mainstream Object-Oriented programming languages. For example, the Stream API introduced in Java 8 allows for functional-like, MapReduce-style operations in processing both finite and infinite data structures. However, using this API efficiently involves subtle considerations like determining when it is best for stream operations to run in parallel, when running operations in parallel can be less efficient, and when it is safe to run in parallel due to possible lambda expression side-effects. In this paper, we present an automated refactoring approach that assists developers in writing efficient stream code in a semantics-preserving fashion. The approach, based on a novel data ordering and typestate analysis, consists of preconditions for automatically determining when it is safe and possibly advantageous to convert sequential streams to parallel and unorder or de-parallelize already parallel streams. The approach was implemented as a plug-in to the Eclipse IDE, uses the WALA and SAFE analysis frameworks, and was evaluated on 11 Java projects consisting of ?642K lines of code. We found that 57 of 157 candidate streams (36.31%) were refactorable, and an average speedup of 3.49 on performance tests was observed. The results indicate that the approach is useful in optimizing stream code to their full potential.

Laverdière, M., Merlo, E..  2018.  Detection of protection-impacting changes during software evolution. 2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER). :434–444.

Role-Based Access Control (RBAC) is often used in web applications to restrict operations and protect security sensitive information and resources. Web applications regularly undergo maintenance and evolution and their security may be affected by source code changes between releases. To prevent security regression and vulnerabilities, developers have to take re-validation actions before deploying new releases. This may become a significant undertaking, especially when quick and repeated releases are sought. We define protection-impacting changes as those changed statements during evolution that alter privilege protection of some code. We propose an automated method that identifies protection-impacting changes within all changed statements between two versions. The proposed approach compares statically computed security protection models and repository information corresponding to different releases of a system to identify protection-impacting changes. Results of experiments present the occurrence of protection-impacting changes over 210 release pairs of WordPress, a PHP content management web application. First, we show that only 41% of the release pairs present protection-impacting changes. Second, for these affected release pairs, protection-impacting changes can be identified and represent a median of 47.00 lines of code, that is 27.41% of the total changed lines of code. Over all investigated releases in WordPress, protection-impacting changes amounted to 10.89% of changed lines of code. Conversely, an average of about 89% of changed source code have no impact on RBAC security and thus need no re-validation nor investigation. The proposed method reduces the amount of candidate causes of protection changes that developers need to investigate. This information could help developers re-validate application security, identify causes of negative security changes, and perform repairs in a more effective way.

Mertoguno, S., Craven, R., Koller, D., Mickelson, M..  2018.  Reducing Attack Surface via Executable Transformation. 2018 IEEE Cybersecurity Development (SecDev). :138-138.

Modern software development and deployment practices encourage complexity and bloat while unintentionally sacrificing efficiency and security. A major driver in this is the overwhelming emphasis on programmers' productivity. The constant demands to speed up development while reducing costs have forced a series of individual decisions and approaches throughout software engineering history that have led to this point. The current state-of-the-practice in the field is a patchwork of architectures and frameworks, packed full of features in order to appeal to: the greatest number of people, obscure use cases, maximal code reuse, and minimal developer effort. The Office of Naval Research (ONR) Total Platform Cyber Protection (TPCP) program seeks to de-bloat software binaries late in the life-cycle with little or no access to the source code or the development process.

Kim, H., Yoon, J. I., Jang, Y., Park, S..  2017.  Design of heterogeneous integrated digital signature system for ensuring platform independence. 2017 4th International Conference on Computer Applications and Information Processing Technology (CAIPT). :1–4.

Recently, digital transactions in real estate, insurance, etc. have become popular, and researchers are actively studying digital signatures as a method for distinguishing individuals. However, existing digital signature systems have different methods for making signatures depending on the platform and device, and because they are used on platforms owned by corporations, they have the disadvantage of being highly platform-dependent and having low software extensibility. Therefore, in this paper we have analyzed existing digital signature systems and designed a heterogeneous integrated digital signature system which has per-user contract management features and can guarantee platform independence and increase the ease of software extension and maintenance by using a browser environment.

Appelt, D., Panichella, A., Briand, L..  2017.  Automatically Repairing Web Application Firewalls Based on Successful SQL Injection Attacks. 2017 IEEE 28th International Symposium on Software Reliability Engineering (ISSRE). :339–350.

Testing and fixing Web Application Firewalls (WAFs) are two relevant and complementary challenges for security analysts. Automated testing helps to cost-effectively detect vulnerabilities in a WAF by generating effective test cases, i.e., attacks. Once vulnerabilities have been identified, the WAF needs to be fixed by augmenting its rule set to filter attacks without blocking legitimate requests. However, existing research suggests that rule sets are very difficult to understand and too complex to be manually fixed. In this paper, we formalise the problem of fixing vulnerable WAFs as a combinatorial optimisation problem. To solve it, we propose an automated approach that combines machine learning with multi-objective genetic algorithms. Given a set of legitimate requests and bypassing SQL injection attacks, our approach automatically infers regular expressions that, when added to the WAF's rule set, prevent many attacks while letting legitimate requests go through. Our empirical evaluation based on both open-source and proprietary WAFs shows that the generated filter rules are effective at blocking previously identified and successful SQL injection attacks (recall between 54.6% and 98.3%), while triggering in most cases no or few false positives (false positive rate between 0% and 2%).

Kaur, A., Jain, S., Goel, S..  2017.  A Support Vector Machine Based Approach for Code Smell Detection. 2017 International Conference on Machine Learning and Data Science (MLDS). :9–14.

Code smells may be introduced in software due to market rivalry, work pressure deadline, improper functioning, skills or inexperience of software developers. Code smells indicate problems in design or code which makes software hard to change and maintain. Detecting code smells could reduce the effort of developers, resources and cost of the software. Many researchers have proposed different techniques like DETEX for detecting code smells which have limited precision and recall. To overcome these limitations, a new technique named as SVMCSD has been proposed for the detection of code smells, based on support vector machine learning technique. Four code smells are specified namely God Class, Feature Envy, Data Class and Long Method and the proposed technique is validated on two open source systems namely ArgoUML and Xerces. The accuracy of SVMCSD is found to be better than DETEX in terms of two metrics, precision and recall, when applied on a subset of a system. While considering the entire system, SVMCSD detect more occurrences of code smells than DETEX.

Popov, P..  2017.  Models of Reliability of Fault-Tolerant Software Under Cyber-Attacks. 2017 IEEE 28th International Symposium on Software Reliability Engineering (ISSRE). :228–239.

This paper offers a new approach to modelling the effect of cyber-attacks on reliability of software used in industrial control applications. The model is based on the view that successful cyber-attacks introduce failure regions, which are not present in non-compromised software. The model is then extended to cover a fault tolerant architecture, such as the 1-out-of-2 software, popular for building industrial protection systems. The model is used to study the effectiveness of software maintenance policies such as patching and "cleansing" ("proactive recovery") under different adversary models ranging from independent attacks to sophisticated synchronized attacks on the channels. We demonstrate that the effect of attacks on reliability of diverse software significantly depends on the adversary model. Under synchronized attacks system reliability may be more than an order of magnitude worse than under independent attacks on the channels. These findings, although not surprising, highlight the importance of using an adequate adversary model in the assessment of how effective various cyber-security controls are.

Sugumar, G., Mathur, A..  2017.  Testing the Effectiveness of Attack Detection Mechanisms in Industrial Control Systems. 2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). :138–145.

Industrial Control Systems (ICS) are found in critical infrastructure such as for power generation and water treatment. When security requirements are incorporated into an ICS, one needs to test the additional code and devices added do improve the prevention and detection of cyber attacks. Conducting such tests in legacy systems is a challenge due to the high availability requirement. An approach using Timed Automata (TA) is proposed to overcome this challenge. This approach enables assessment of the effectiveness of an attack detection method based on process invariants. The approach has been demonstrated in a case study on one stage of a 6- stage operational water treatment plant. The model constructed captured the interactions among components in the selected stage. In addition, a set of attacks, attack detection mechanisms, and security specifications were also modeled using TA. These TA models were conjoined into a network and implemented in UPPAAL. The models so implemented were found effective in detecting the attacks considered. The study suggests the use of TA as an effective tool to model an ICS and study its attack detection mechanisms as a complement to doing so in a real plant-operational or under design.

Zhao, S., Ding, X..  2017.  On the Effectiveness of Virtualization Based Memory Isolation on Multicore Platforms. 2017 IEEE European Symposium on Security and Privacy (EuroS P). :546–560.

Virtualization based memory isolation has been widely used as a security primitive in many security systems. This paper firstly provides an in-depth analysis of its effectiveness in the multicore setting, a first in the literature. Our study reveals that memory isolation by itself is inadequate for security. Due to the fundamental design choices in hardware, it faces several challenging issues including page table maintenance, address mapping validation and thread identification. As demonstrated by our attacks implemented on XMHF and BitVisor, these issues undermine the security of memory isolation. Next, we propose a new isolation approach that is immune to the aforementioned problems. In our design, the hypervisor constructs a fully isolated micro computing environment (FIMCE) that exposes a minimal attack surface to an untrusted OS on a multicore platform. By virtue of its architectural niche, FIMCE offers stronger assurance and greater versatility than memory isolation. We have built a prototype of FIMCE and measured its performance. To show the benefits of using FIMCE as a building block, we have also implemented several practical applications which cannot be securely realized by using memory isolation alone.

Yu, Misun, Ma, Yu-Seung, Bae, Doo-Hwan.  2016.  Characterizing Non-deadlock Concurrency Bug Fixes in Open-source Java Programs. Proceedings of the 31st Annual ACM Symposium on Applied Computing. :1534–1537.

Fixing a non-deadlock concurrency bug is a difficult job that sometimes introduces additional bugs and requires a long time. To overcome this difficulty and efficiently perform fixing jobs, engineers should have broad knowledge of various fix patterns, and the ability to select the most proper one among those patterns based on quantitative data gathered from real-world bug databases. In this paper, we provide a real-world characteristic study on the fixes of non-deadlock concurrency bugs to help engineers responsible for program maintenance. In particular, we examine various fix patterns and the factors that influence the selection of those patterns with respect to the preexistence of locks and failure types. Our results will provide useful information for engineers who write bug patches, and researchers who study efficient testing and fixing techniques.

Mulcahy, J. J., Huang, S..  2015.  An autonomic approach to extend the business value of a legacy order fulfillment system. 2015 Annual IEEE Systems Conference (SysCon) Proceedings. :595–600.

In the modern retailing industry, many enterprise resource planning (ERP) systems are considered legacy software systems that have become too expensive to replace and too costly to re-engineer. Countering the need to maintain and extend the business value of these systems is the need to do so in the simplest, cheapest, and least risky manner available. There are a number of approaches used by software engineers to mitigate the negative impact of evolving a legacy systems, including leveraging service-oriented architecture to automate manual tasks previously performed by humans. A relatively recent approach in software engineering focuses upon implementing self-managing attributes, or “autonomic” behavior in software applications and systems of applications in order to reduce or eliminate the need for human monitoring and intervention. Entire systems can be autonomic or they can be hybrid systems that implement one or more autonomic components to communicate with external systems. In this paper, we describe a commercial development project in which a legacy multi-channel commerce enterprise resource planning system was extended with service-oriented architecture an autonomic control loop design to communicate with an external third-party security screening provider. The goal was to reduce the cost of the human labor necessary to screen an ever-increasing volume of orders and to reduce the potential for human error in the screening process. The solution automated what was previously an inefficient, incomplete, and potentially error-prone manual process by inserting a new autonomic software component into the existing order fulfillment workflow.

Xin Xia, Yang Feng, Lo, D., Zhenyu Chen, Xinyu Wang.  2014.  Towards more accurate multi-label software behavior learning. Software Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Software Evolution Week - IEEE Conference on. :134-143.

In a modern software system, when a program fails, a crash report which contains an execution trace would be sent to the software vendor for diagnosis. A crash report which corresponds to a failure could be caused by multiple types of faults simultaneously. Many large companies such as Baidu organize a team to analyze these failures, and classify them into multiple labels (i.e., multiple types of faults). However, it would be time-consuming and difficult for developers to manually analyze these failures and come out with appropriate fault labels. In this paper, we automatically classify a failure into multiple types of faults, using a composite algorithm named MLL-GA, which combines various multi-label learning algorithms by leveraging genetic algorithm (GA). To evaluate the effectiveness of MLL-GA, we perform experiments on 6 open source programs and show that MLL-GA could achieve average F-measures of 0.6078 to 0.8665. We also compare our algorithm with Ml.KNN and show that on average across the 6 datasets, MLL-GA improves the average F-measure of MI.KNN by 14.43%.

Gupta, M.K., Govil, M.C., Singh, G..  2014.  Static analysis approaches to detect SQL injection and cross site scripting vulnerabilities in web applications: A survey. Recent Advances and Innovations in Engineering (ICRAIE), 2014. :1-5.

Dependence on web applications is increasing very rapidly in recent time for social communications, health problem, financial transaction and many other purposes. Unfortunately, presence of security weaknesses in web applications allows malicious user's to exploit various security vulnerabilities and become the reason of their failure. Currently, SQL Injection (SQLI) and Cross-Site Scripting (XSS) vulnerabilities are most dangerous security vulnerabilities exploited in various popular web applications i.e. eBay, Google, Facebook, Twitter etc. Research on defensive programming, vulnerability detection and attack prevention techniques has been quite intensive in the past decade. Defensive programming is a set of coding guidelines to develop secure applications. But, mostly developers do not follow security guidelines and repeat same type of programming mistakes in their code. Attack prevention techniques protect the applications from attack during their execution in actual environment. The difficulties associated with accurate detection of SQLI and XSS vulnerabilities in coding phase of software development life cycle. This paper proposes a classification of software security approaches used to develop secure software in various phase of software development life cycle. It also presents a survey of static analysis based approaches to detect SQL Injection and cross-site scripting vulnerabilities in source code of web applications. The aim of these approaches is to identify the weaknesses in source code before their exploitation in actual environment. This paper would help researchers to note down future direction for securing legacy web applications in early phases of software development life cycle.

Mercy, S.S., Srikanth, G.U..  2014.  An efficient data security system for group data sharing in cloud system environment. Information Communication and Embedded Systems (ICICES), 2014 International Conference on. :1-4.

Cloud Computing delivers the service to the users by having reliable internet connection. In the secure cloud, services are stored and shared by multiple users because of less cost and data maintenance. Sharing the data is the vital intention of cloud data centres. On the other hand, storing the sensitive information is the privacy concern of the cloud. Cloud service provider has to protect the stored client's documents and applications in the cloud by encrypting the data to provide data integrity. Designing proficient document sharing among the group members in the cloud is the difficult task because of group user membership change and conserving document and group user identity confidentiality. To propose the fortified data sharing scheme in secret manner for providing efficient group revocation Advanced Encryption Standard scheme is used. Proposed System contributes efficient group authorization, authentication, confidentiality and access control and document security. To provide more data security Advanced Encryption Standard algorithm is used to encrypt the document. By asserting security and confidentiality in this proficient method securely share the document among the multiple cloud user.