Visible to the public Biblio

Filters: Keyword is security level  [Clear All Filters]
2021-08-02
Longueira-Romerc, Ángel, Iglesias, Rosa, Gonzalez, David, Garitano, Iñaki.  2020.  How to Quantify the Security Level of Embedded Systems? A Taxonomy of Security Metrics 2020 IEEE 18th International Conference on Industrial Informatics (INDIN). 1:153—158.
Embedded Systems (ES) development has been historically focused on functionality rather than security, and today it still applies in many sectors and applications. However, there is an increasing number of security threats over ES, and a successful attack could have economical, physical or even human consequences, since many of them are used to control critical applications. A standardized and general accepted security testing framework is needed to provide guidance, common reporting forms and the possibility to compare the results along the time. This can be achieved by introducing security metrics into the evaluation or assessment process. If carefully designed and chosen, metrics could provide a quantitative, repeatable and reproducible value that would reflect the level of security protection of the ES. This paper analyzes the features that a good security metric should exhibit, introduces a taxonomy for classifying them, and finally, it carries out a literature survey on security metrics for the security evaluation of ES. In this review, more than 500 metrics were collected and analyzed. Then, they were reduced to 169 metrics that have the potential to be applied to ES security evaluation. As expected, the 77.5% of them is related exclusively to software, and only the 0.6% of them addresses exclusively hardware security. This work aims to lay the foundations for constructing a security evaluation methodology that uses metrics so as to quantify the security level of an ES.
2021-03-09
Philipcris C Encarnacion, Bobby D Gerardo, Alexander A Hernandez.  2020.  Performance Analysis on Enhanced Round Function of SIMECK Block Cipher. 2020 12th International Conference on Communication Software and Networks (ICCSN).

There are various Lightweight Block Ciphers (LBC) nowadays that exist to meet the demand on security requirements of the current trend in computing world, the application in the resource-constrained devices, and the Internet of Things (IoT) technologies. One way to evaluate these LBCs is to conduct a performance analysis. Performance evaluation parameters seek appropriate value such as encryption time, security level, scalability, and flexibility. Like SIMECK block cipher whose algorithm design was anchored with the SIMON and SPECK block ciphers were efficient in security and performance, there is a need to revisit its design. This paper aims to present a comparative study on the performance analysis of the enhanced round function of the SIMECK Family block cipher. The enhanced ARX structure of the round function on the three variants shows an efficient performance over the original algorithm in different simulations using the following methods of measurement; avalanche effect, runtime performance, and brute-force attack. Its recommended that the enhanced round function of the SIMECK family be evaluated by different security measurements and attacks.

2021-01-18
Laptiev, O., Shuklin, G., Hohonianc, S., Zidan, A., Salanda, I..  2019.  Dynamic Model of Cyber Defense Diagnostics of Information Systems With The Use of Fuzzy Technologies. 2019 IEEE International Conference on Advanced Trends in Information Theory (ATIT). :116–119.
When building the architecture of cyber defense systems, one of the important tasks is to create a methodology for current diagnostics of cybersecurity status of information systems and objects of information activity. The complexity of this procedure is that having a strong security level of the object at the software level does not mean that such power is available at the hardware level or at the cryptographic level. There are always weaknesses in all levels of information security that criminals are constantly looking for. Therefore, the task of promptly calculating the likelihood of possible negative consequences from the successful implementation of cyberattacks is an urgent task today. This paper proposes an approach of obtaining an instantaneous calculation of the probabilities of negative consequences from the successful implementation of cyberattacks on objects of information activity on the basis of delayed differential equation theory and the mechanism of constructing a logical Fuzzy function. This makes it possible to diagnose the security status of the information system.
2020-09-04
Ichsani, Yuditha, Deyani, Resisca Audia, Bahaweres, Rizal Broer.  2019.  The Cryptocurrency Simulation using Elliptic Curve Cryptography Algorithm in Mining Process from Normal, Failed, and Fake Bitcoin Transactions. 2019 7th International Conference on Cyber and IT Service Management (CITSM). 7:1—8.
On each cryptocurrency transaction, a high-level security is needed to protect user data as well as data on the transaction. At this stage, it takes the appropriate algorithm in securing transactions with more efficient processing time. The Elliptic Curve Cryptography (ECC) is one of the cryptography algorithms which has high-level security, and ECC is often compared with the Rivest, Shamir, and Adleman (RSA) algorithm because it has a security level that is almost the same but has some differences that make ECC is superior compared to the RSA algorithm, so that the ECC algorithm can optimize cryptocurrency security in the transaction process. The purpose of this study is to simulate the bitcoin transactions using cryptography algorithms. This study uses the ECC algorithm as the algorithm ECDH and ECDSA key exchange as the algorithm for signing and verifying. The comparison results of ECC and RSA processing time is 1:25, so the ECC is more efficient. The total processing time of ECC is 0,006 seconds and RSA is 0,152 seconds. The researcher succeeded to implement the ECC algorithm as securing algorithms in mining process of 3 scenarios, normal, failed, and fake bitcoin transactions.
2020-08-28
Chukry, Souheil, Sbeyti, Hassan.  2019.  Security Enhancement in Storage Area Network. 2019 7th International Symposium on Digital Forensics and Security (ISDFS). :1—5.

Living in the age of digital transformation, companies and individuals are moving to public and private clouds to store and retrieve information, hence the need to store and retrieve data is exponentially increasing. Existing storage technologies such as DAS are facing a big challenge to deal with these huge amount of data. Hence, newer technologies should be adopted. Storage Area Network (SAN) is a distributed storage technology that aggregates data from several private nodes into a centralized secure place. Looking at SAN from a security perspective, clearly physical security over multiple geographical remote locations is not adequate to ensure a full security solution. A SAN security framework needs to be developed and designed. This work investigates how SAN protocols work (FC, ISCSI, FCOE). It also investigates about other storages technologies such as Network Attached Storage (NAS) and Direct Attached Storage (DAS) including different metrics such as: IOPS (input output per second), Throughput, Bandwidths, latency, cashing technologies. This research work is focusing on the security vulnerabilities in SAN listing different attacks in SAN protocols and compare it to other such as NAS and DAS. Another aspect of this work is to highlight performance factors in SAN in order to find a way to improve the performance focusing security solutions aimed to enhance the security level in SAN.

2020-08-13
Yang, Huiting, Bai, Yunxiao, Zou, Zhenwan, Shi, Yuanyuan, Chen, Shuting, Ni, Chenxi.  2019.  Research on Security Self-defense of Power Information Network Based on Artificial Intelligence. 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 1:1248—1251.
By studying the problems of network information security in power system, this paper proposes a self-defense research and solution for power information network based on artificial intelligence. At the same time, it proposes active defense new technologies such as vulnerability scanning, baseline scanning, network security attack and defense drills in power information network security, aiming at improving the security level of network information and ensuring the security of the information network in the power system.
2020-07-06
Saffar, Zahra, Mohammadi, Siamak.  2019.  Fault tolerant non-linear techniques for scalar multiplication in ECC. 2019 16th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC). :104–113.
Elliptic curve cryptography (ECC) has shorter key length than other asymmetric cryptography algorithms such as RSA with the same security level. Existing faults in cryptographic computations can cause faulty results. If a fault occurs during encryption, false information will be sent to the destination, in which case channel error detection codes are unable to detect the fault. In this paper, we consider the error detection in elliptic curve scalar multiplication point, which is the most important operation in ECC. Our technique is based on non-linear error detection codes. We consider an algorithm for scalar multiplication point proposed by Microsoft research group. The proposed technique in our methods has less overhead for additions (36.36%) and multiplications (34.84%) in total, compared to previous works. Also, the proposed method can detect almost 100% of injected faults.
2020-04-06
Demir, Mehmet özgÜn, Kurty, GÜne Karabulut, Dartmannz, Guido, Ascheidx, Gerd, Pusane, Ali Emre.  2018.  Security Analysis of Forward Error Correction Codes in Relay Aided Networks. 2018 Global Information Infrastructure and Networking Symposium (GIIS). :1–5.

Network security and data confidentiality of transmitted information are among the non-functional requirements of industrial wireless sensor networks (IWSNs) in addition to latency, reliability and energy efficiency requirements. Physical layer security techniques are promising solutions to assist cryptographic methods in the presence of an eavesdropper in IWSN setups. In this paper, we propose a physical layer security scheme, which is based on both insertion of an random error vector to forward error correction (FEC) codewords and transmission over decentralized relay nodes. Reed-Solomon and Golay codes are selected as FEC coding schemes and the security performance of the proposed model is evaluated with the aid of decoding error probability of an eavesdropper. The results show that security level is highly based on the location of the eavesdropper and secure communication can be achieved when some of channels between eavesdropper and relay nodes are significantly noisier.

2020-03-09
López-Vizcaíno, Manuel, Cacheda, Fidel, Novoa, Franciso J., Carneiro, Víctor.  2019.  Metrics and Techniques for Early Detection in Communication Networks. 2019 14th Iberian Conference on Information Systems and Technologies (CISTI). :1–3.

Nowadays, communication networks have a high relevance in any field. Because of this, it is necessary to maintain them working properly and with an adequate security level. In many fields, and in anomaly detection in communication networks in particular, it results really convenient the use of early detection methods. Therefore, adequate metrics must be defined to allow the correct evaluation of methods applied in relation to time delay in the detection. In this thesis the definition of time-aware metrics for early detection anomaly techniques evaluation.

2019-12-05
Guang, Xuan, Yeung, Raymond w..  2019.  Local-Encoding-Preserving Secure Network Coding for Fixed Dimension. 2019 IEEE International Symposium on Information Theory (ISIT). :201-205.

In the paradigm of network coding, information-theoretic security is considered in the presence of wiretappers, who can access one arbitrary edge subset up to a certain size, referred to as the security level. Secure network coding is applied to prevent the leakage of the source information to the wiretappers. In this paper, we consider the problem of secure network coding for flexible pairs of information rate and security level with any fixed dimension (equal to the sum of rate and security level). We present a novel approach for designing a secure linear network code (SLNC) such that the same SLNC can be applied for all the rate and security-level pairs with the fixed dimension. We further develop a polynomial-time algorithm for efficient implementation and prove that there is no penalty on the required field size for the existence of SLNCs in terms of the best known lower bound by Guang and Yeung. Finally, by applying our approach as a crucial building block, we can construct a family of SLNCs that not only can be applied to all possible pairs of rate and security level but also share a common local encoding kernel at each intermediate node in the network.

2019-10-23
Ali, Abdullah Ahmed, Zamri Murah, Mohd.  2018.  Security Assessment of Libyan Government Websites. 2018 Cyber Resilience Conference (CRC). :1-4.

Many governments organizations in Libya have started transferring traditional government services to e-government. These e-services will benefit a wide range of public. However, deployment of e-government bring many new security issues. Attackers would take advantages of vulnerabilities in these e-services and would conduct cyber attacks that would result in data loss, services interruptions, privacy loss, financial loss, and other significant loss. The number of vulnerabilities in e-services have increase due to the complexity of the e-services system, a lack of secure programming practices, miss-configuration of systems and web applications vulnerabilities, or not staying up-to-date with security patches. Unfortunately, there is a lack of study being done to assess the current security level of Libyan government websites. Therefore, this study aims to assess the current security of 16 Libyan government websites using penetration testing framework. In this assessment, no exploits were committed or tried on the websites. In penetration testing framework (pen test), there are four main phases: Reconnaissance, Scanning, Enumeration, Vulnerability Assessment and, SSL encryption evaluation. The aim of a security assessment is to discover vulnerabilities that could be exploited by attackers. We also conducted a Content Analysis phase for all websites. In this phase, we searched for security and privacy policies implementation information on the government websites. The aim is to determine whether the websites are aware of current accepted standard for security and privacy. From our security assessment results of 16 Libyan government websites, we compared the websites based on the number of vulnerabilities found and the level of security policies. We only found 9 websites with high and medium vulnerabilities. Many of these vulnerabilities are due to outdated software and systems, miss-configuration of systems and not applying the latest security patches. These vulnerabilities could be used by cyber hackers to attack the systems and caused damages to the systems. Also, we found 5 websites didn't implement any SSL encryption for data transactions. Lastly, only 2 websites have published security and privacy policies on their websites. This seems to indicate that these websites were not concerned with current standard in security and privacy. Finally, we classify the 16 websites into 4 safety categories: highly unsafe, unsafe, somewhat unsafe and safe. We found only 1 website with a highly unsafe ranking. Based on our finding, we concluded that the security level of the Libyan government websites are adequate, but can be further improved. However, immediate actions need to be taken to mitigate possible cyber attacks by fixing the vulnerabilities and implementing SSL encryption. Also, the websites need to publish their security and privacy policy so the users could trust their websites.

2019-09-11
Wang, D., Ma, Y., Du, J., Ji, Y., Song, Y..  2018.  Security-Enhanced Signaling Scheme in Software Defined Optical Network. 2018 10th International Conference on Communication Software and Networks (ICCSN). :286–289.

The communication security issue is of great importance and should not be ignored in backbone optical networks which is undergoing the evolution toward software defined networks (SDN). With the aim to solve this problem, this paper conducts deep analysis into the security challenge of software defined optical networks (SDON) and proposes a so-called security-enhanced signaling scheme of SDON. The proposed scheme makes full advantage of current OpenFIow protocol with some necessary extensions and security improvement, by combining digital signatures and message feedback with efficient PKI (Public Key Infrastructure) in signaling procedure of OpenFIow interaction. Thus, this security-enhanced signaling procedure is also designed in details to make sure the end-to-end trusted service connection. Simulation results show that this proposed approach can greatly improve the security level of large-scale optical network for Energy Internet services with better performance in term of connection success rate performance.

2019-08-05
Ogundokun, A., Zavarsky, P., Swar, B..  2018.  Cybersecurity assurance control baselining for smart grid communication systems. 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS). :1–6.

Cybersecurity assurance plays an important role in managing trust in smart grid communication systems. In this paper, cybersecurity assurance controls for smart grid communication networks and devices are delineated from the more technical functional controls to provide insights on recent innovative risk-based approaches to cybersecurity assurance in smart grid systems. The cybersecurity assurance control baselining presented in this paper is based on requirements and guidelines of the new family of IEC 62443 standards on network and systems security of industrial automation and control systems. The paper illustrates how key cybersecurity control baselining and tailoring concepts of the U.S. NIST SP 800-53 can be adopted in smart grid security architecture. The paper outlines the application of IEC 62443 standards-based security zoning and assignment of security levels to the zones in smart grid system architectures. To manage trust in the smart grid system architecture, cybersecurity assurance base lining concepts are applied per security impact levels. Selection and justification of security assurance controls presented in the paper is utilizing the approach common in Security Technical Implementation Guides (STIGs) of the U.S. Defense Information Systems Agency. As shown in the paper, enhanced granularity for managing trust both on the overall system and subsystem levels of smart grid systems can be achieved by implementation of the instructions of the CNSSI 1253 of the U.S. Committee of National Security Systems on security categorization and control selection for national security systems.

2019-04-05
Wu, C., Kuo, M., Lee, K..  2018.  A Dynamic-Key Secure Scan Structure Against Scan-Based Side Channel and Memory Cold Boot Attacks. 2018 IEEE 27th Asian Test Symposium (ATS). :48-53.

Scan design is a universal design for test (DFT) technology to increase the observability and controllability of the circuits under test by using scan chains. However, it also leads to a potential security problem that attackers can use scan design as a backdoor to extract confidential information. Researchers have tried to address this problem by using secure scan structures that usually have some keys to confirm the identities of users. However, the traditional methods to store intermediate data or keys in memory are also under high risk of being attacked. In this paper, we propose a dynamic-key secure DFT structure that can defend scan-based and memory attacks without decreasing the system performance and the testability. The main idea is to build a scan design key generator that can generate the keys dynamically instead of storing and using keys in the circuit statically. Only specific patterns derived from the original test patterns are valid to construct the keys and hence the attackers cannot shift in any other patterns to extract correct internal response from the scan chains or retrieve the keys from memory. Analysis results show that the proposed method can achieve a very high security level and the security level will not decrease no matter how many guess rounds the attackers have tried due to the dynamic nature of our method.

2019-04-01
Alibadi, S. H., Sadkhan, S. B..  2018.  A Proposed Security Evaluation Method for Bluetooth E0Based on Fuzzy Logic. 2018 International Conference on Advanced Science and Engineering (ICOASE). :324–329.

The security level is very important in Bluetooth, because the network or devices using secure communication, are susceptible to many attacks against the transmitted data received through eavesdropping. The cryptosystem designers needs to know the complexity of the designed Bluetooth E0. And what the advantages given by any development performed on any known Bluetooth E0Encryption method. The most important criteria can be used in evaluation method is considered as an important aspect. This paper introduce a proposed fuzzy logic technique to evaluate the complexity of Bluetooth E0Encryption system by choosing two parameters, which are entropy and correlation rate, as inputs to proposed fuzzy logic based Evaluator, which can be applied with MATLAB system.

2019-03-18
Yongdong, C., Wei, W., Yanling, Z., Jinshuai, W..  2018.  Lightweight Security Signaling Mechanism in Optical Network for Smart Power Grid. 2018 IEEE International Conference on Computer and Communication Engineering Technology (CCET). :110–113.

The communication security issue brought by Smart Grid is of great importance and should not be ignored in backbone optical networks. With the aim to solve this problem, this paper firstly conducts deep analysis into the security challenge of optical network under smart power grid environment and proposes a so-called lightweight security signaling mechanism of multi-domain optical network for Energy Internet. The proposed scheme makes full advantage of current signaling protocol with some necessary extensions and security improvement. Thus, this lightweight security signaling protocol is designed to make sure the end-to-end trusted connection. Under the multi-domain communication services of smart power grid, evaluation simulation for the signaling interaction is conducted. Simulation results show that this proposed approach can greatly improve the security level of large-scale multi-domain optical network for smart power grid with better performance in term of connection success rate performance.

2018-05-16
Fattahi, J., Mejri, M., Ziadia, M., Ghayoula, E., Samoud, O., Pricop, E..  2017.  Cryptographic protocol for multipart missions involving two independent and distributed decision levels in a military context. 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :1127–1132.

In several critical military missions, more than one decision level are involved. These decision levels are often independent and distributed, and sensitive pieces of information making up the military mission must be kept hidden from one level to another even if all of the decision levels cooperate to accomplish the same task. Usually, a mission is negotiated through insecure networks such as the Internet using cryptographic protocols. In such protocols, few security properties have to be ensured. However, designing a secure cryptographic protocol that ensures several properties at once is a very challenging task. In this paper, we propose a new secure protocol for multipart military missions that involve two independent and distributed decision levels having different security levels. We show that it ensures the secrecy, authentication, and non-repudiation properties. In addition, we show that it resists against man-in-the-middle attacks.

2015-05-06
Azab, M..  2014.  Multidimensional Diversity Employment for Software Behavior Encryption. New Technologies, Mobility and Security (NTMS), 2014 6th International Conference on. :1-5.

Modern cyber systems and their integration with the infrastructure has a clear effect on the productivity and quality of life immensely. Their involvement in our daily life elevate the need for means to insure their resilience against attacks and failure. One major threat is the software monoculture. Latest research work demonstrated the danger of software monoculture and presented diversity to reduce the attack surface. In this paper, we propose ChameleonSoft, a multidimensional software diversity employment to, in effect, induce spatiotemporal software behavior encryption and a moving target defense. ChameleonSoft introduces a loosely coupled, online programmable software-execution foundation separating logic, state and physical resources. The elastic construction of the foundation enabled ChameleonSoft to define running software as a set of behaviorally-mutated functionally-equivalent code variants. ChameleonSoft intelligently Shuffle, at runtime, these variants while changing their physical location inducing untraceable confusion and diffusion enough to encrypt the execution behavior of the running software. ChameleonSoft is also equipped with an autonomic failure recovery mechanism for enhanced resilience. In order to test the applicability of the proposed approach, we present a prototype of the ChameleonSoft Behavior Encryption (CBE) and recovery mechanisms. Further, using analysis and simulation, we study the performance and security aspects of the proposed system. This study aims to assess the provisioned level of security by measuring the avalanche effect percentage and the induced confusion and diffusion levels to evaluate the strength of the CBE mechanism. Further, we compute the computational cost of security provisioning and enhancing system resilience.

2015-05-05
Azab, M..  2014.  Multidimensional Diversity Employment for Software Behavior Encryption. New Technologies, Mobility and Security (NTMS), 2014 6th International Conference on. :1-5.

Modern cyber systems and their integration with the infrastructure has a clear effect on the productivity and quality of life immensely. Their involvement in our daily life elevate the need for means to insure their resilience against attacks and failure. One major threat is the software monoculture. Latest research work demonstrated the danger of software monoculture and presented diversity to reduce the attack surface. In this paper, we propose ChameleonSoft, a multidimensional software diversity employment to, in effect, induce spatiotemporal software behavior encryption and a moving target defense. ChameleonSoft introduces a loosely coupled, online programmable software-execution foundation separating logic, state and physical resources. The elastic construction of the foundation enabled ChameleonSoft to define running software as a set of behaviorally-mutated functionally-equivalent code variants. ChameleonSoft intelligently Shuffle, at runtime, these variants while changing their physical location inducing untraceable confusion and diffusion enough to encrypt the execution behavior of the running software. ChameleonSoft is also equipped with an autonomic failure recovery mechanism for enhanced resilience. In order to test the applicability of the proposed approach, we present a prototype of the ChameleonSoft Behavior Encryption (CBE) and recovery mechanisms. Further, using analysis and simulation, we study the performance and security aspects of the proposed system. This study aims to assess the provisioned level of security by measuring the avalanche effect percentage and the induced confusion and diffusion levels to evaluate the strength of the CBE mechanism. Further, we compute the computational cost of security provisioning and enhancing system resilience.

Kun-Lin Tsai, Jiu-Soon Tan, Fang-Yie Leu, Yi-Li Huang.  2014.  A Group File Encryption Method using Dynamic System Environment Key. Network-Based Information Systems (NBiS), 2014 17th International Conference on. :476-483.

File encryption is an effective way for an enterprise to prevent its data from being lost. However, the data may still be deliberately or inadvertently leaked out by the insiders or customers. When the sensitive data are leaked, it often results in huge monetary damages and credit loss. In this paper, we propose a novel group file encryption/decryption method, named the Group File Encryption Method using Dynamic System Environment Key (GEMS for short), which provides users with auto crypt, authentication, authorization, and auditing security schemes by utilizing a group key and a system environment key. In the GEMS, the important parameters are hidden and stored in different devices to avoid them from being cracked easily. Besides, it can resist known-key and eavesdropping attacks to achieve a very high security level, which is practically useful in securing an enterprise's and a government's private data.