Visible to the public Biblio

Filters: Keyword is Intelligent sensors  [Clear All Filters]
2021-10-12
Onu, Emmanuel, Mireku Kwakye, Michael, Barker, Ken.  2020.  Contextual Privacy Policy Modeling in IoT. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :94–102.
The Internet of Things (IoT) has been one of the biggest revelations of the last decade. These cyber-physical systems seamlessly integrate and improve the activities in our daily lives. Hence, creating a wide application for it in several domains, such as smart buildings and cities. However, the integration of IoT also comes with privacy challenges. The privacy challenges result from the ability of these devices to pervasively collect personal data about individuals through sensors in ways that could be unknown to them. A number of research efforts have evaluated privacy policy awareness and enforcement as key components for addressing these privacy challenges. This paper provides a framework for understanding contextualized privacy policy within the IoT domain. This will enable IoT privacy researchers to better understand IoT privacy policies and their modeling.
2021-06-01
Chinchawade, Amit Jaykumar, Lamba, Onkar Singh.  2020.  Authentication Schemes and Security Issues in Internet Of Everything (IOE) Systems. 2020 12th International Conference on Computational Intelligence and Communication Networks (CICN). :342–345.
Nowadays, Internet Of Everything (IOE) has demanded for a wide range of applications areas. IOE is started to replaces an Internet Of things (IOT). IOE is a combination of massive number of computing elements and sensors, people, processes and data through the Internet infrastructure. Device to Device communication and interfacing of Wireless Sensor network with IOE can makes any system as a Smart System. With the increased the use of Internet and Internet connected devices has opportunities for hackers to launch attacks on unprecedented scale and impact. The IOE can serve the varied security in the various sectors like manufacturing, agriculture, smart grid, payments, IoT gateways, healthcare and industrial ecosystems. To secure connections among people, process, data, and things, is a major challenge in Internet of Everything.. This paper focuses on various security Issues and Authentication Schemes in the IOE systems.
2021-05-20
Mheisn, Alaa, Shurman, Mohammad, Al-Ma’aytah, Abdallah.  2020.  WSNB: Wearable Sensors with Neural Networks Located in a Base Station for IoT Environment. 2020 7th International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :1—4.
The Internet of Things (IoT) is a system paradigm that recently introduced, which includes different smart devices and applications, especially, in smart cities, e.g.; manufacturing, homes, and offices. To improve their awareness capabilities, it is attractive to add more sensors to their framework. In this paper, we propose adding a new sensor as a wearable sensor connected wirelessly with a neural network located on the base station (WSNB). WSNB enables the added sensor to refine their labels through active learning. The new sensors achieve an average accuracy of 93.81%, which is 4.5% higher than the existing method, removing human support and increasing the life cycle for the sensors by using neural network approach in the base station.
2021-04-27
H, R. M., Shet, U. Harshitha, Shetty, R. D., Shrinivasa, J, A. N., S, K. R. N..  2020.  Triggering and Auditing the Event During Intrusion Detections in WSN’s Defence Application. 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS). :1328–1332.
WSNs are extensively used in defence application for monitoring militant activities in various ways in large unknown territories. Here WSNs has to have large set of distributed systems in the form as sensors nodes. Along with security concerns, False Alarming is also a factor which may interrupt the service and downgrade the application further. Thus in our work we have made sure that when a trigger is raised to an event, images can be captured from the connected cameras so that it will be helpful for both auditing the event as well as capturing the scene which led to the triggering of the event.
2021-03-29
Grundy, J..  2020.  Human-centric Software Engineering for Next Generation Cloud- and Edge-based Smart Living Applications. 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID). :1—10.

Humans are a key part of software development, including customers, designers, coders, testers and end users. In this keynote talk I explain why incorporating human-centric issues into software engineering for next-generation applications is critical. I use several examples from our recent and current work on handling human-centric issues when engineering various `smart living' cloud- and edge-based software systems. This includes using human-centric, domain-specific visual models for non-technical experts to specify and generate data analysis applications; personality impact on aspects of software activities; incorporating end user emotions into software requirements engineering for smart homes; incorporating human usage patterns into emerging edge computing applications; visualising smart city-related data; reporting diverse software usability defects; and human-centric security and privacy requirements for smart living systems. I assess the usefulness of these approaches, highlight some outstanding research challenges, and briefly discuss our current work on new human-centric approaches to software engineering for smart living applications.

2021-01-28
Inshi, S., Chowdhury, R., Elarbi, M., Ould-Slimane, H., Talhi, C..  2020.  LCA-ABE: Lightweight Context-Aware Encryption for Android Applications. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1—6.

The evolving of context-aware applications are becoming more readily available as a major driver of the growth of future connected smart, autonomous environments. However, with the increasing of security risks in critical shared massive data capabilities and the increasing regulation requirements on privacy, there is a significant need for new paradigms to manage security and privacy compliances. These challenges call for context-aware and fine-grained security policies to be enforced in such dynamic environments in order to achieve efficient real-time authorization between applications and connected devices. We propose in this work a novel solution that aims to provide context-aware security model for Android applications. Specifically, our proposition provides automated context-aware access control model and leverages Attribute-Based Encryption (ABE) to secure data communications. Thorough experiments have been performed and the evaluation results demonstrate that the proposed solution provides an effective lightweight adaptable context-aware encryption model.

2020-11-23
Ramapatruni, S., Narayanan, S. N., Mittal, S., Joshi, A., Joshi, K..  2019.  Anomaly Detection Models for Smart Home Security. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :19–24.
Recent years have seen significant growth in the adoption of smart homes devices. These devices provide convenience, security, and energy efficiency to users. For example, smart security cameras can detect unauthorized movements, and smoke sensors can detect potential fire accidents. However, many recent examples have shown that they open up a new cyber threat surface. There have been several recent examples of smart devices being hacked for privacy violations and also misused so as to perform DDoS attacks. In this paper, we explore the application of big data and machine learning to identify anomalous activities that can occur in a smart home environment. A Hidden Markov Model (HMM) is trained on network level sensor data, created from a test bed with multiple sensors and smart devices. The generated HMM model is shown to achieve an accuracy of 97% in identifying potential anomalies that indicate attacks. We present our approach to build this model and compare with other techniques available in the literature.
2020-11-17
Radha, P., Selvakumar, N., Sekar, J. Raja, Johnsonselva, J. V..  2018.  Enhancing Internet of Battle Things using Ultrasonic assisted Non-Destructive Testing (Technical solution). 2018 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC). :1—4.

The subsystem of IoMT (Internet of Military of Things) called IoBT (Internet of Battle of Things) is the major resource of the military where the various stack holders of the battlefield and different categories of equipment are tightly integrated through the internet. The proposed architecture mentioned in this paper will be helpful to design IoBT effectively for warfare using irresistible technologies like information technology, embedded technology, and network technology. The role of Machine intelligence is essential in IoBT to create smart things and provide accurate solutions without human intervention. Non-Destructive Testing (NDT) is used in Industries to examine and analyze the invisible defects of equipment. Generally, the ultrasonic waves are used to examine and analyze the internal defects of materials. Hence the proposed architecture of IoBT is enhanced by ultrasonic based NDT to study the properties of the things of the battlefield without causing any damage.

2020-11-02
Singh, Dhananjay, Tripathi, Gaurav, Shah, Sayed Chhattan, da Rosa Righi, Rodrigo.  2018.  Cyber physical surveillance system for Internet of Vehicles. 2018 IEEE 4th World Forum on Internet of Things (WF-IoT). :546—551.

Internet of Vehicle (IoV) is an essential part of the Intelligent Transportation system (ITS) which is growing exponentially in the automotive industry domain. The term IoV is used in this paper for Internet of Vehicles. IoV is conceptualized for sharing traffic, safety and several other vehicle-related information between vehicles and end user. In recent years, the number of connected vehicles has increased allover the world. Having information sharing and connectivity as its advantage, IoV also faces the challenging task in the cybersecurity-related matters. The future consists of crowded places in an interconnected world through wearable's, sensors, smart phones etc. We are converging towards IoV technology and interactions with crowded space of connected peoples. However, this convergence demands high-security mechanism from the connected crowd as-well-as other connected vehicles to safeguard of proposed IoV system. In this paper, we coin the term of smart people crowd (SPC) and the smart vehicular crowd (SVC) for the Internet of Vehicles (IoV). These specific crowds of SPC and SVC are the potential cyber attackers of the smart IoV. People connected to the internet in the crowded place are known as a smart crowd. They have interfacing devices with sensors and the environment. A smart crowd would also consist of the random number of smart vehicles. With the future converging in to the smart connected framework for crowds, vehicles and connected vehicles, we present a novel cyber-physical surveillance system (CPSS) framework to tackle the security threats in the crowded environment for the smart automotive industry and provide the cyber security mechanism in the crowded places. We also describe an overview of use cases and their security challenges on the Internet of Vehicles.

2020-10-19
Sharma, Sachin, Ghanshala, Kamal Kumar, Mohan, Seshadri.  2019.  Blockchain-Based Internet of Vehicles (IoV): An Efficient Secure Ad Hoc Vehicular Networking Architecture. 2019 IEEE 2nd 5G World Forum (5GWF). :452–457.
With the transformation of connected vehicles into the Internet of Vehicles (IoV), the time is now ripe for paving the way for the next generation of connected vehicles with novel applications and innovative security measures. The connected vehicles are experiencing prenominal growth in the auto industry, but are still studded with many security and privacy vulnerabilities. Today's IoV applications are part of cyber physical communication systems that collect useful information from thousands of smart sensors associated with the connected vehicles. The technology advancement has paved the way for connected vehicles to share significant information among drivers, auto manufacturers, auto insurance companies and operational and maintenance service providers for various applications. The critical issues in engineering the IoV applications are effective to use of the available spectrum and effective allocation of good channels an opportunistic manner to establish connectivity among vehicles, and the effective utilization of the infrastructure under various traffic conditions. Security and privacy in information sharing are the main concerns in a connected vehicle communication network. Blockchain technology facilitates secured communication among users in a connected vehicles network. Originally, blockchain technology was developed and employed with the cryptocurrency. Bitcoin, to provide increased trust, reliability, and security among users based on peer-to-peer networks for transaction sharing. In this paper, we propose to integrate blockchain technology into ad hoc vehicular networking so that the vehicles can share network resources with increased trust, reliability, and security using distributed access control system and can benefit a wider scope of scalable IoV applications scenarios for decision making. The proposed architecture is the faithful environment for information sharing among connected vehicles. Blockchain technology allows multiple copies of data storage at the distribution cloud. Distributed access control system is significantly more secure than a traditional centralized system. This paper also describes how important of ad hoc vehicular networking in human life, possibilities in real-world implementation and its future trends. The ad hoc vehicular networking may become one of the most trendy networking concepts in the future that has the perspective to bring out much ease human beneficial and secured applications.
2020-09-28
Ahmad, Ibtihaj, Zarrar, Muhammad Kaab, Saeed, Takreem, Rehman, Saad.  2018.  Security Aspects of Cyber Physical Systems. 2018 1st International Conference on Computer Applications Information Security (ICCAIS). :1–6.
Cyber Physical System (CPS) is one of the emerging technologies of the day due to its large number of applications. Its applications extends to automotive, commercial, medical, home appliances and manufacturing industries. Mass research is being conducted in this area including design models, signal processing, control system models, communication models and security. One of the most important aspects of these is security and privacy of CPS. There are a number of vulnerabilities and threats that can be used by an attacker to exploit a cyber physical system. This paper provides a brief review of current security threats, vulnerabilities and its solutions for CPS. For the sake of simplicity the security threats have been divided into two classes i.e. control security and information security. Based on this division various attack methods and their possible solutions have been discussed.
Dong, Guishan, Chen, Yuxiang, Fan, Jia, Liu, Dijun, Hao, Yao, Wang, Zhen.  2018.  A Privacy-User-Friendly Scheme for Wearable Smart Sensing Devices Based on Blockchain. 2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS). :481–486.
Wearable smart sensing devices presently become more and more popular in people's daily life, which also brings serious problems related to personal data privacy. In order to provide users better experiences, wearable smart sensing devices are collecting users' personal data all the time and uploading the data to service provider to get computing services, which objectively let service provider master each user's condition and cause a lot of problems such as spam, harassing call, etc. This paper designs a blockchain based scheme to solve such problems by cutting off the association between user identifier and its sensing data from perspective of shielding service providers and adversaries. Firstly, privacy requirements and situations in smart sensing area are reviewed. Then, three key technologies are introduced in the scheme including its theories, purposes and usage. Next, the designed protocol is shown and analyzed in detail. Finally, security analysis and engineering feasibility of the scheme are given. This scheme will give user better experience from privacy protection perspective in smart sensing area.
2020-08-17
La Manna, Michele, Perazzo, Pericle, Rasori, Marco, Dini, Gianluca.  2019.  fABElous: An Attribute-Based Scheme for Industrial Internet of Things. 2019 IEEE International Conference on Smart Computing (SMARTCOMP). :33–38.
The Internet of Things (IoT) is a technological vision in which constrained or embedded devices connect together through the Internet. This enables common objects to be empowered with communication and cooperation capabilities. Industry can take an enormous advantage of IoT, leading to the so-called Industrial IoT. In these systems, integrity, confidentiality, and access control over data are key requirements. An emerging approach to reach confidentiality and access control is Attribute-Based Encryption (ABE), which is a technique able to enforce cryptographically an access control over data. In this paper, we propose fABElous, an ABE scheme suitable for Industrial IoT applications which aims at minimizing the overhead of encryption on communication. fABElous ensures data integrity, confidentiality, and access control, while reducing the communication overhead of 35% with respect to using ABE techniques naively.
2020-07-30
Tina, Sonam, Harshit, Singla, Muskan.  2019.  Smart Lightning and Security System. 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU). :1—6.

As Electric Power is one of the major concerns, so the concept of the automatic lighting and security system saves the electrical energy. By using the automatic lightning, the consumption of electrical power can be minimized to a greater extent and for that sensors and microcontrollers can be designed in such a manner such that lights get ON/OFF based on motion in a room. The various sensors used for sensing the motion in an area are PIR motion sensor, IR Motion Sensor. An IR sensor senses the heat of an object and detects its motion within some range as it emits infrared radiations and this complete process can be controlled by microcontroller. Along with that security system can be applied in this concept by programming the microcontroller in such a way that if there is some movement in an area then lights must get ON/OFF automatically or any alarm must start. This chapter proposes the framework for the smart lightning with security systems in a building so that electrical power can be utilized efficiently and secures the building.

2020-02-17
Facon, Adrien, Guilley, Sylvain, Ngo, Xuan-Thuy, Perianin, Thomas.  2019.  Hardware-enabled AI for Embedded Security: A New Paradigm. 2019 3rd International Conference on Recent Advances in Signal Processing, Telecommunications Computing (SigTelCom). :80–84.

As chips become more and more connected, they are more exposed (both to network and to physical attacks). Therefore one shall ensure they enjoy a sufficient protection level. Security within chips is accordingly becoming a hot topic. Incident detection and reporting is one novel function expected from chips. In this talk, we explain why it is worthwhile to resort to Artificial Intelligence (AI) for security event handling. Drivers are the need to aggregate multiple and heterogeneous security sensors, the need to digest this information quickly to produce exploitable information, and so while maintaining a low false positive detection rate. Key features are adequate learning procedures and fast and secure classification accelerated by hardware. A challenge is to embed such security-oriented AI logic, while not compromising chip power budget and silicon area. This talk accounts for the opportunities permitted by the symbiotic encounter between chip security and AI.

2019-03-28
Ambassa, P. L., Kayem, A. V. D. M., Wolthusen, S. D., Meinel, C..  2018.  Privacy Risks in Resource Constrained Smart Micro-Grids. 2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA). :527-532.

In rural/remote areas, resource constrained smart micro-grid (RCSMG) architectures can offer a cost-effective power management and supply alternative to national power grid connections. RCSMG architectures handle communications over distributed lossy networks to minimize operation costs. However, the unreliable nature of lossy networks makes privacy an important consideration. Existing anonymisation works on data perturbation work mainly by distortion with additive noise. Apply these solutions to RCSMGs is problematic, because deliberate noise additions must be distinguishable both from system and adversarial generated noise. In this paper, we present a brief survey of privacy risks in RCSMGs centered on inference, and propose a method of mitigating these risks. The lesson here is that while RCSMGs give users more control over power management and distribution, good anonymisation is essential to protecting personal information on RCSMGs.

2019-03-25
Pawlenka, T., Škuta, J..  2018.  Security system based on microcontrollers. 2018 19th International Carpathian Control Conference (ICCC). :344–347.
The article describes design and realization of security system based on single-chip microcontrollers. System includes sensor modules for unauthorized entrance detection based on magnetic contact, measuring carbon monoxide level, movement detection and measuring temperature and humidity. System also includes control unit, control panel and development board Arduino with ethernet interface connected for web server implementation.
2019-02-25
Essa, A., Al-Shoura, T., Nabulsi, A. Al, Al-Ali, A. R., Aloul, F..  2018.  Cyber Physical Sensors System Security: Threats, Vulnerabilities, and Solutions. 2018 2nd International Conference on Smart Grid and Smart Cities (ICSGSC). :62-67.

A Cyber Physical Sensor System (CPSS) consists of a computing platform equipped with wireless access points, sensors, and actuators. In a Cyber Physical System, CPSS constantly collects data from a physical object that is under process and performs local real-time control activities based on the process algorithm. The collected data is then transmitted through the network layer to the enterprise command and control center or to the cloud computing services for further processing and analysis. This paper investigates the CPSS' most common cyber security threats and vulnerabilities and provides countermeasures. Furthermore, the paper addresses how the CPSS are attacked, what are the leading consequences of the attacks, and the possible remedies to prevent them. Detailed case studies are presented to help the readers understand the CPSS threats, vulnerabilities, and possible solutions.

Kuyumani, M., Joseph, M. K., Hassan, S..  2018.  Communication Technologies for Efficient Energy Management in Smart Grid. 2018 International Conference on Advances in Big Data, Computing and Data Communication Systems (icABCD). :1-8.

The existing radial topology makes the power system less reliable since any part in the system failure will disrupt electrical power delivery in the network. The increasing security concerns, electrical energy theft, and present advancement in Information and Communication Technologies are some factors that led to modernization of power system. In a smart grid, a network of smart sensors offers numerous opportunities that may include monitoring of power, consumer-side energy management, synchronization of dispersed power storage, and integrating sources of renewable energy. Smart sensor networks are low cost and are ease to deploy hence they are favorable contestants for deployment smart power grids at a larger scale. These networks will result in a colossal volume of dissimilar range of data that require an efficient processing and analyzing process in order to realize an efficient smart grid. The existing technology can be used to collect data but dealing with the collected information proficiently as well as mining valuable material out of it remains challenging. The paper investigates communication technologies that maybe deployed in a smart grid. In this paper simulations results for the Additive White Gaussian Noise (AWGN) channel are illustrated. We propose a model and a communication network domain riding on the power system domain. The model was interrogated by simulation in MATLAB.

2019-02-14
Chen, B., Lu, Z., Zhou, H..  2018.  Reliability Assessment of Distribution Network Considering Cyber Attacks. 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2). :1-6.

With the rapid development of the smart grid, a large number of intelligent sensors and meters have been introduced in distribution network, which will inevitably increase the integration of physical networks and cyber networks, and bring potential security threats to the operating system. In this paper, the functions of the information system on distribution network are described when cyber attacks appear at the intelligent electronic devices (lED) or at the distribution main station. The effect analysis of the distribution network under normal operating condition or in the fault recovery process is carried out, and the reliability assessment model of the distribution network considering cyber attacks is constructed. Finally, the IEEE-33-bus distribution system is taken as a test system to presented the evaluation process based on the proposed model.

2018-10-26
Abubaker, N., Dervishi, L., Ayday, E..  2017.  Privacy-preserving fog computing paradigm. 2017 IEEE Conference on Communications and Network Security (CNS). :502–509.

As an extension of cloud computing, fog computing is proving itself more and more potentially useful nowadays. Fog computing is introduced to overcome the shortcomings of cloud computing paradigm in handling the massive amount of traffic caused by the enormous number of Internet of Things devices being increasingly connected to the Internet on daily basis. Despite its advantages, fog architecture introduces new security and privacy threats that need to be studied and solved as soon as possible. In this work, we explore two privacy issues posed by the fog computing architecture and we define privacy challenges according to them. The first challenge is related to the fog's design purposes of reducing the latency and improving the bandwidth, where the existing privacy-preserving methods violate these design purposed. The other challenge is related to the proximity of fog nodes to the end-users or IoT devices. We discuss the importance of addressing these challenges by putting them in the context of real-life scenarios. Finally, we propose a privacy-preserving fog computing paradigm that solves these challenges and we assess the security and efficiency of our solution.

2018-08-23
Chowdhury, F. H., Shuvo, B., Islam, M. R., Ghani, T., Akash, S. A., Ahsan, R., Hassan, N. N..  2017.  Design, control amp;amp; performance analysis of secure you IoT based smart security system. 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.

The paper introduces a smart system developed with sensors that is useful for internal and external security. The system is useful for people living in houses, apartments, high officials, bank, and offices. The system is developed in two phases one for internal security like home another is external security like open areas, streets. The system is consist of a mobile application, capacitive sensing, smart routing these valuable features to ensure safety of life and wealth. This security system is wireless sensor based which is an effective alternative of cctv cameras and other available security systems. Efficiency of this system is developed after going through practical studies and prototyping. The end result explains the feasibility rate, positive impact factor, reliability of the system. More research is possible in future based on this system this research explains that.

2018-01-23
Khan, S., Ullah, K..  2017.  Smart elevator system for hazard notification. 2017 International Conference on Innovations in Electrical Engineering and Computational Technologies (ICIEECT). :1–4.

In this proposed method, the traditional elevators are upgraded in such a way that any alarming situation in the elevator can be detected and then sent to a main center where further action can be taken accordingly. Different emergency situation can be handled by implementing the system. Smart elevator system works by installing different modules inside the elevator such as speed sensors which will detect speed variations occurring above or below a certain threshold of elevator speed. The smart elevator system installed within the elevator sends a message to the emergency response center and sends an automated call as well. The smart system also includes an emotion detection algorithm which will detect emotions of the individual based on their expression in the elevator. The smart system also has a whisper detection system as well to know if someone stuck inside the elevator is alive during any hazardous situation. A broadcast signal is used as a check in the elevator system to evaluate if every part of the system is in stable state. Proposed system can completely replace the current elevator systems and become part of smart homes.

Ulz, T., Pieber, T., Steger, C., Lesjak, C., Bock, H., Matischek, R..  2017.  SECURECONFIG: NFC and QR-code based hybrid approach for smart sensor configuration. 2017 IEEE International Conference on RFID (RFID). :41–46.

In smart factories and smart homes, devices such as smart sensors are connected to the Internet. Independent of the context in which such a smart sensor is deployed, the possibility to change its configuration parameters in a secure way is essential. Existing solutions do provide only minimal security or do not allow to transfer arbitrary configuration data. In this paper, we present an NFC- and QR-code based configuration interface for smart sensors which improves the security and practicability of the configuration altering process while introducing as little overhead as possible. We present a protocol for configuration as well as a hardware extension including a dedicated security controller (SC) for smart sensors. For customers, no additional hardware other than a commercially available smartphone will be necessary which makes the proposed approach highly applicable for smart factory and smart home contexts alike.

2017-12-20
Ulz, T., Pieber, T., Steger, C., Haas, S., Matischek, R., Bock, H..  2017.  Hardware-Secured Configuration and Two-Layer Attestation Architecture for Smart Sensors. 2017 Euromicro Conference on Digital System Design (DSD). :229–236.
Summary form only given. Strong light-matter coupling has been recently successfully explored in the GHz and THz [1] range with on-chip platforms. New and intriguing quantum optical phenomena have been predicted in the ultrastrong coupling regime [2], when the coupling strength Ω becomes comparable to the unperturbed frequency of the system ω. We recently proposed a new experimental platform where we couple the inter-Landau level transition of an high-mobility 2DEG to the highly subwavelength photonic mode of an LC meta-atom [3] showing very large Ω/ωc = 0.87. Our system benefits from the collective enhancement of the light-matter coupling which comes from the scaling of the coupling Ω ∝ √n, were n is the number of optically active electrons. In our previous experiments [3] and in literature [4] this number varies from 104-103 electrons per meta-atom. We now engineer a new cavity, resonant at 290 GHz, with an extremely reduced effective mode surface Seff = 4 × 10-14 m2 (FE simulations, CST), yielding large field enhancements above 1500 and allowing to enter the few (\textbackslashtextless;100) electron regime. It consist of a complementary metasurface with two very sharp metallic tips separated by a 60 nm gap (Fig.1(a, b)) on top of a single triangular quantum well. THz-TDS transmission experiments as a function of the applied magnetic field reveal strong anticrossing of the cavity mode with linear cyclotron dispersion. Measurements for arrays of only 12 cavities are reported in Fig.1(c). On the top horizontal axis we report the number of electrons occupying the topmost Landau level as a function of the magnetic field. At the anticrossing field of B=0.73 T we measure approximately 60 electrons ultra strongly coupled (Ω/ω- \textbackslashtextbar\textbackslashtextbar