Visible to the public Biblio

Found 102 results

Filters: Keyword is security analysis  [Clear All Filters]
2021-07-28
Aigner, Andreas, Khelil, Abdelmajid.  2020.  A Scoring System to Efficiently Measure Security in Cyber-Physical Systems. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1141—1145.
The importance of Cyber-Physical Systems (CPS) gains more and more weight in our daily business and private life. Although CPS build the backbone for major trends, like Industry 4.0 and connected vehicles, they also propose many new challenges. One major challenge can be found in achieving a high level of security within such highly connected environments, in which an unpredictable number of heterogeneous systems with often-distinctive characteristics interact with each other. In order to develop high-level security solutions, system designers must eventually know the current level of security of their specification. To this end, security metrics and scoring frameworks are essential, as they quantitatively express security of a given design or system. However, existing solutions may not be able to handle the proposed challenges of CPS, as they mainly focus on one particular system and one specific attack. Therefore, we aim to elaborate a security scoring mechanism, which can efficiently be used in CPS, while considering all essential information. We break down each system within the CPS into its core functional blocks and analyze a variety of attacks in terms of exploitability, scalability of attacks, as well as potential harm to targeted assets. With this approach, we get an overall assessment of security for the whole CPS, as it integrates the security-state of all interacting systems. This allows handling the presented complexity in CPS in a more efficient way, than existing solutions.
ISSN: 2324-9013
2021-04-27
Aigner, A., Khelil, A..  2020.  A Benchmark of Security Metrics in Cyber-Physical Systems. 2020 IEEE International Conference on Sensing, Communication and Networking (SECON Workshops). :1—6.

The usage of connected devices and their role within our daily- and business life gains more and more impact. In addition, various derivations of Cyber-Physical Systems (CPS) reach new business fields, like smart healthcare or Industry 4.0. Although these systems do bring many advantages for users by extending the overall functionality of existing systems, they come with several challenges, especially for system engineers and architects. One key challenge consists in achieving a sufficiently high level of security within the CPS environment, as sensitive data or safety-critical functions are often integral parts of CPS. Being system of systems (SoS), CPS complexity, unpredictability and heterogeneity complicate analyzing the overall level of security, as well as providing a way to detect ongoing attacks. Usually, security metrics and frameworks provide an effective tool to measure the level of security of a given component or system. Although several comprehensive surveys exist, an assessment of the effectiveness of the existing solutions for CPS environments is insufficiently investigated in literature. In this work, we address this gap by benchmarking a carefully selected variety of existing security metrics in terms of their usability for CPS. Accordingly, we pinpoint critical CPS challenges and qualitatively assess the effectiveness of the existing metrics for CPS systems.

Elavarasan, G., Veni, S..  2020.  Data Sharing Attribute-Based Secure with Efficient Revocation in Cloud Computing. 2020 International Conference on Computing and Information Technology (ICCIT-1441). :1—6.

In recent days, cloud computing is one of the emerging fields. It is a platform to maintain the data and privacy of the users. To process and regulate the data with high security, the access control methods are used. The cloud environment always faces several challenges such as robustness, security issues and so on. Conventional methods like Cipher text-Policy Attribute-Based Encryption (CP-ABE) are reflected in providing huge security, but still, the problem exists like the non-existence of attribute revocation and minimum efficient. Hence, this research work particularly on the attribute-based mechanism to maximize efficiency. Initially, an objective coined out in this work is to define the attributes for a set of users. Secondly, the data is to be re-encrypted based on the access policies defined for the particular file. The re-encryption process renders information to the cloud server for verifying the authenticity of the user even though the owner is offline. The main advantage of this work evaluates multiple attributes and allows respective users who possess those attributes to access the data. The result proves that the proposed Data sharing scheme helps for Revocation under a fine-grained attribute structure.

2021-03-29
Liao, S., Wu, J., Li, J., Bashir, A. K..  2020.  Proof-of-Balance: Game-Theoretic Consensus for Controller Load Balancing of SDN. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :231–236.
Software Defined Networking (SDN) focus on the isolation of control plane and data plane, greatly enhancing the network's support for heterogeneity and flexibility. However, although the programmable network greatly improves the performance of all aspects of the network, flexible load balancing across controllers still challenges the current SDN architecture. Complex application scenarios lead to flexible and changeable communication requirements, making it difficult to guarantee the Quality of Service (QoS) for SDN users. To address this issue, this paper proposes a paradigm that uses blockchain to incentive safe load balancing for multiple controllers. We proposed a controller consortium blockchain for secure and efficient load balancing of multi-controllers, which includes a new cryptographic currency balance coin and a novel consensus mechanism Proof-of-Balance (PoB). In addition, we have designed a novel game theory-based incentive mechanism to incentive controllers with tight communication resources to offload tasks to idle controllers. The security analysis and performance simulation results indicate the superiority and effectiveness of the proposed scheme.
2021-03-22
Meshram, C., Obaidat, M. S., Meshram, A..  2020.  New Efficient QERPKC based on Partial Discrete Logarithm Problem. 2020 International Conference on Computer, Information and Telecommunication Systems (CITS). :1–5.
In this study, our aim is to extend the scope for public key cryptography. We offered a new efficient public key encryption scheme using partial discrete logarithm problem (PDLP). It is known as the Quadratic Exponentiation Randomized Public Key Cryptosystem (QERPKC). Security of the presented scheme is based on the hardness of PDLP. We reflect the safety in contrast to trick of certain elements in the offered structure and demonstrated the prospect of creating an extra safety structure. The presented new efficient QERPKC structure is appropriate for low-bandwidth communication, low-storage and low-computation environments.
2021-03-09
Sibahee, M. A. A., Lu, S., Abduljabbar, Z. A., Liu, E. X., Ran, Y., Al-ashoor, A. A. J., Hussain, M. A., Hussien, Z. A..  2020.  Promising Bio-Authentication Scheme to Protect Documents for E2E S2S in IoT-Cloud. 2020 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). :1—6.

Document integrity and origin for E2E S2S in IoTcloud have recently received considerable attention because of their importance in the real-world fields. Maintaining integrity could protect decisions made based on these message/image documents. Authentication and integrity solutions have been conducted to recognise or protect any modification in the exchange of documents between E2E S2S (smart-to-smart). However, none of the proposed schemes appear to be sufficiently designed as a secure scheme to prevent known attacks or applicable to smart devices. We propose a robust scheme that aims to protect the integrity of documents for each users session by integrating HMAC-SHA-256, handwritten feature extraction using a local binary pattern, one-time random pixel sequence based on RC4 to randomly hide authentication codes using LSB. The proposed scheme can provide users with one-time bio-key, robust message anonymity and a disappearing authentication code that does not draw the attention of eavesdroppers. Thus, the scheme improves the data integrity for a users messages/image documents, phase key agreement, bio-key management and a one-time message/image document code for each users session. The concept of stego-anonymity is also introduced to provide additional security to cover a hashed value. Finally, security analysis and experimental results demonstrate and prove the invulnerability and efficiency of the proposed scheme.

2021-02-01
Mahmood, Z. H., Ibrahem, M. K..  2020.  A Noise-Free Homomorphic Encryption based on Chaotic System. 2020 1st. Information Technology To Enhance e-learning and Other Application (IT-ELA. :132–137.
Fully homomorphic encryption (FHE) was one of the most prominent research topics of the last ten years. And it is considered as a major cryptographic tool in a secure and reliable cloud computing environment. The reason behind that because it allows computations over encrypted data, without decrypting the original message. This paper developed a new symmetric (FHE) algorithm based on Enhanced Matrix Operation for Randomization and Encryption (EMORE) algorithm using a chaotic system. The proposed algorithm was considered a noise-free algorithm. It generates the ciphertext in a floating-point number's format, overcomes the problem of plaintext ring and modular arithmetic operation in EMORE by the hardness of a chaotic system, and provides another level of security in terms of randomness properties, sensitivity to the initial condition, and large key size (\textbackslashtextgreater2100) of a chaotic system. Besides that, the proposed algorithm provides the confidentiality and privacy of outsourced data computing through homomorphism property of it. By using both numerical and statistical tests, these tests proved that the proposed algorithm has positive randomness properties and provide secure and reliable encryption (through encryption-decryption time, key sensitivity, keyspace, and correlation). Finally, the simulation results show that the execution time of the proposed algorithm is faster about 7.85 times than the EMORE algorithm.
2021-01-22
Xu, H., Jiang, H..  2019.  An Image Encryption Schema Based on Hybrid Optimized Chaotic System. 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE). :784–788.

The purpose of this paper is to improve the safety of chaotic image encryption algorithm. Firstly, to achieve this goal, it put forward two improved chaotic system logistic and henon, which covered an promoted henon chaotic system with better probability density, and an 2-dimension logistic chaotic system with high Lyapunov exponents. Secondly, the chaotic key stream was generated by the new 2D logistic chaotic system and optimized henon mapping, which mixed in dynamic proportions. The conducted sequence has better randomness and higher safety for image cryptosystem. Thirdly, we proposed algorithm takes advantage of the compounded chaotic system Simulation experiment results and security analysis showed that the proposed scheme was more effective and secure. It can resist various typical attacks, has high security, satisfies the requirements of image encryption theoretical.

Sahabandu, D., Allen, J., Moothedath, S., Bushnell, L., Lee, W., Poovendran, R..  2020.  Quickest Detection of Advanced Persistent Threats: A Semi-Markov Game Approach. 2020 ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS). :9—19.
Advanced Persistent Threats (APTs) are stealthy, sophisticated, long-term, multi-stage attacks that threaten the security of sensitive information. Dynamic Information Flow Tracking (DIFT) has been proposed as a promising mechanism to detect and prevent various cyber attacks in computer systems. DIFT tracks suspicious information flows in the system and generates security analysis when anomalous behavior is detected. The number of information flows in a system is typically large and the amount of resources (such as memory, processing power and storage) required for analyzing different flows at different system locations varies. Hence, efficient use of resources is essential to maintain an acceptable level of system performance when using DIFT. On the other hand, the quickest detection of APTs is crucial as APTs are persistent and the damage caused to the system is more when the attacker spends more time in the system. We address the problem of detecting APTs and model the trade-off between resource efficiency and quickest detection of APTs. We propose a game model that captures the interaction of APT and a DIFT-based defender as a two-player, multi-stage, zero-sum, Stackelberg semi-Markov game. Our game considers the performance parameters such as false-negatives generated by DIFT and the time required for executing various operations in the system. We propose a two-time scale Q-learning algorithm that converges to a Stackelberg equilibrium under infinite horizon, limiting average payoff criteria. We validate our model and algorithm on a real-word attack dataset obtained using Refinable Attack INvestigation (RAIN) framework.
2020-12-28
Zhang, C., Shahriar, H., Riad, A. B. M. K..  2020.  Security and Privacy Analysis of Wearable Health Device. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :1767—1772.

Mobile wearable health devices have expanded prevalent usage and become very popular because of the valuable health monitor system. These devices provide general health tips and monitoring human health parameters as well as generally assisting the user to take better health of themselves. However, these devices are associated with security and privacy risk among the consumers because these devices deal with sensitive data information such as users sleeping arrangements, dieting formula such as eating constraint, pulse rate and so on. In this paper, we analyze the significant security and privacy features of three very popular health tracker devices: Fitbit, Jawbone and Google Glass. We very carefully analyze the devices' strength and how the devices communicate and its Bluetooth pairing process with mobile devices. We explore the possible malicious attack through Bluetooth networking by hacker. The outcomes of this analysis show how these devices allow third parties to gain sensitive information from the device exact location that causes the potential privacy breach for users. We analyze the reasons of user data security and privacy are gained by unauthorized people on wearable devices and the possible challenge to secure user data as well as the comparison of three wearable devices (Fitbit, Jawbone and Google Glass) security vulnerability and attack type.

2020-11-20
Lu, X., Guan, Z., Zhou, X., Du, X., Wu, L., Guizani, M..  2019.  A Secure and Efficient Renewable Energy Trading Scheme Based on Blockchain in Smart Grid. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1839—1844.
Nowadays, with the diversification and decentralization of energy systems, the energy Internet makes it possible to interconnect distributed energy sources and consumers. In the energy trading market, the traditional centralized model relies entirely on trusted third parties. However, as the number of entities involved in the transactions grows and the forms of transactions diversify, the centralized model gradually exposes problems such as insufficient scalability, High energy consumption, and low processing efficiency. To address these challenges, we propose a secure and efficient energy renewable trading scheme based on blockchain. In our scheme, the electricity market trading model is divided into two levels, which can not only protect the privacy, but also achieve a green computing. In addition, in order to adapt to the relatively weak computing power of the underlying equipment in smart grid, we design a credibility-based equity proof mechanism to greatly improve the system availability. Compared with other similar distributed energy trading schemes, we prove the advantages of our scheme in terms of high operational efficiency and low computational overhead through experimental evaluations. Additionally, we conduct a detailed security analysis to demonstrate that our solution meets the security requirements.
Romdhane, R. B., Hammami, H., Hamdi, M., Kim, T..  2019.  At the cross roads of lattice-based and homomorphic encryption to secure data aggregation in smart grid. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :1067—1072.

Various research efforts have focused on the problem of customer privacy protection in the smart grid arising from the large deployment of smart energy meters. In fact, the deployed smart meters distribute accurate profiles of home energy use, which can reflect the consumers' behaviour. This paper proposes a privacy-preserving lattice-based homomorphic aggregation scheme. In this approach, the smart household appliances perform the data aggregation while the smart meter works as relay node. Its role is to authenticate the exchanged messages between the home area network appliances and the related gateway. Security analysis show that our scheme guarantees consumer privacy and messages confidentiality and integrity in addition to its robustness against several attacks. Experimental results demonstrate the efficiency of our proposed approach in terms of communication complexity.

2020-10-26
Sun, Pengfei, Garcia, Luis, Zonouz, Saman.  2019.  Tell Me More Than Just Assembly! Reversing Cyber-Physical Execution Semantics of Embedded IoT Controller Software Binaries. 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :349–361.
The safety of critical cyber-physical IoT devices hinges on the security of their embedded software that implements control algorithms for monitoring and control of the associated physical processes, e.g., robotics and drones. Reverse engineering of the corresponding embedded controller software binaries enables their security analysis by extracting high-level, domain-specific, and cyber-physical execution semantic information from executables. We present MISMO, a domain-specific reverse engineering framework for embedded binary code in emerging cyber-physical IoT control application domains. The reverse engineering outcomes can be used for firmware vulnerability assessment, memory forensics analysis, targeted memory data attacks, or binary patching for dynamic selective memory protection (e.g., important control algorithm parameters). MISMO performs semantic-matching at an algorithmic level that can help with the understanding of any possible cyber-physical security flaws. MISMO compares low-level binary symbolic values and high-level algorithmic expressions to extract domain-specific semantic information for the binary's code and data. MISMO enables a finer-grained understanding of the controller by identifying the specific control and state estimation algorithms used. We evaluated MISMO on 2,263 popular firmware binaries by 30 commercial vendors from 6 application domains including drones, self-driving cars, smart homes, robotics, 3D printers, and the Linux kernel controllers. The results show that MISMO can accurately extract the algorithm-level semantics of the embedded binary code and data regions. We discovered a zero-day vulnerability in the Linux kernel controllers versions 3.13 and above.
2020-10-16
Babenko, Liudmila, Pisarev, Ilya.  2018.  Security Analysis of the Electronic Voting Protocol Based on Blind Intermediaries Using the SPIN Verifier. 2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :43—435.

Cryptographic protocols are the basis for the security of any protected system, including the electronic voting system. One of the most effective ways to analyze protocol security is to use verifiers. In this paper, the formal verifier SPIN was used to analyze the security of the cryptographic protocol for e-voting, which is based on model checking using linear temporal logic (LTL). The cryptographic protocol of electronic voting is described. The main structural units of the Promela language used for simulation in the SPIN verifier are described. The model of the electronic voting protocol in the language Promela is given. The interacting parties, transferred data, the order of the messages transmitted between the parties are described. Security of the cryptographic protocol using the SPIN tool is verified. The simulation of the protocol with active intruder using the man in the middle attack (MITM) to substitute data is made. In the simulation results it is established that the protocol correctly handles the case of an active attack on the parties' authentication.

2020-10-05
Zhao, Yongxin, Wu, Xi, Liu, Jing, Yang, Yilong.  2018.  Formal Modeling and Security Analysis for OpenFlow-Based Networks. 2018 23rd International Conference on Engineering of Complex Computer Systems (ICECCS). :201–204.
We present a formal OpenFlow-based network programming language (OF) including various flow rules, which can not only describe the behaviors of an individual switch, but also support to model a network of switches connected in the point-to-point topology. Besides, a topology-oriented operational semantics of the proposed language is explored to specify how the packet is processed and delivered in the OpenFlow-based networks. Based on the formal framework, we also propose an approach to detect potential security threats caused by the conflict of dynamic flow rules imposed by dynamic OpenFlow applications.
2020-09-28
Zhang, Shuaipeng, Liu, Hong.  2019.  Environment Aware Privacy-Preserving Authentication with Predictability for Medical Edge Computing. 2019 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :90–96.
With the development of IoT, smart health has significantly improved the quality of people's life. A large amount of smart health monitoring system has been proposed, which provides an opportunity for timely and efficient diagnosis. Nevertheless, most of them ignored the impact of environment on patients' health. Due to the openness of the communication channel, data security and privacy preservation are crucial problems to be solved. In this work, an environment aware privacy-preserving authentication protocol based on the fuzzy extractor and elliptic curve cryptography (ecc) is designed for health monitoring system with mutual authentication and anonymity. Edge computing unit can authenticate all environmental sensors at one time. Fuzzy synthetic evaluation model is utilized to evaluate the environment equality with the patients' temporal health index (THI) as an assessment factor, which can help to predict the appropriate environment. The session key is established for secure communication based on the predicted result. Through security analysis, the proposed protocol can prevent common attacks. Moreover, performance analysis shows that the proposed protocol is applicable for resource-limited smart devices in edge computing health monitoring system.
2020-09-18
Pham-Thi-Dan, Ngoc, Ho-Van, Khuong, Do-Dac, Thiem, Vo-Que, Son, Pham-Ngoc, Son.  2019.  Security Analysis for Cognitive Radio Network with Energy Scavenging Capable Relay over Nakagami-m Fading Channels. 2019 International Symposium on Electrical and Electronics Engineering (ISEE). :68—72.
In this paper, we propose an exact closed-form expression of secrecy outage probability (SOP) for underlay cognitive network with energy scavenging capable relay over Nakagami-m fading channels and under both (maximum transmit and interference) power constraints. Various results validated the proposed expression and shed insights into the security performance of this network in key specifications.
2020-09-11
Ababtain, Eman, Engels, Daniel.  2019.  Security of Gestures Based CAPTCHAs. 2019 International Conference on Computational Science and Computational Intelligence (CSCI). :120—126.
We present a security analysis of several gesture CAPTCHA challenges designed to operate on mobiles. Mobile gesture CAPTCHA challenges utilize the accelerometer and the gyroscope inputs from a mobile to allow a human to solve a simple test by physically manipulating the device. We have evaluated the security of gesture CAPTCHA in mobile devices and found them resistant to a range of common automated attacks. Our study has shown that using an accelerometer and the gyroscope readings as an input to solve the CAPTCHA is difficult for malware, but easy for a real user. Gesture CAPTCHA is effective in differentiating between humans and machines.
2020-09-08
Xu, Hong-Li, JIANG, HongHua.  2019.  An Image Encryption Schema Based on Hybrid Optimized Chaotic System. 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE). :784–788.
The purpose of this paper is to improve the safety of chaotic image encryption algorithm. Firstly, to achieve this goal, it put forward two improved chaotic system logistic and henon, which covered an promoted henon chaotic system with better probability density, and an 2-dimension logistic chaotic system with high Lyapunov exponents. Secondly, the chaotic key stream was generated by the new 2D logistic chaotic system and optimized henon mapping, which mixed in dynamic proportions. The conducted sequence has better randomness and higher safety for image cryptosystem. Thirdly, we proposed algorithm takes advantage of the compounded chaotic system Simulation experiment results and security analysis showed that the proposed scheme was more effective and secure. It can resist various typical attacks, has high security, satisfies the requirements of image encryption theoretical.
Limaye, Nimisha, Sengupta, Abhrajit, Nabeel, Mohammed, Sinanoglu, Ozgur.  2019.  Is Robust Design-for-Security Robust Enough? Attack on Locked Circuits with Restricted Scan Chain Access 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :1–8.
The security of logic locking has been called into question by various attacks, especially a Boolean satisfiability (SAT) based attack, that exploits scan access in a working chip. Among other techniques, a robust design-for-security (DFS) architecture was presented to restrict any unauthorized scan access, thereby, thwarting the SAT attack (or any other attack that relies on scan access). Nevertheless, in this work, we successfully break this technique by recovering the secret key despite the lack of scan access. Our security analysis on a few benchmark circuits protected by the robust DFS architecture demonstrates the effectiveness of our attack; on average 95% of the key bits are correctly recovered, and almost 100% in most cases. To overcome this and other prevailing attacks, we propose a defense by making fundamental changes to the robust DFS technique; the new defense can withstand all logic locking attacks. We observe, on average, lower area overhead ( 1.65%) than the robust DFS design ( 5.15%), and similar test coverage ( 99.88%).
2020-09-04
Walck, Matthew, Wang, Ke, Kim, Hyong S..  2019.  TendrilStaller: Block Delay Attack in Bitcoin. 2019 IEEE International Conference on Blockchain (Blockchain). :1—9.
We present TendrilStaller, an eclipse attack targeting at Bitcoin's peer-to-peer network. TendrilStaller enables an adversary to delay block propagation to a victim for 10 minutes. The adversary thus impedes the victim from getting the latest blockchain state. It only takes as few as one Bitcoin full node and two light weight nodes to perform the attack. The light weight nodes perform a subset of the functions of a full Bitcoin node. The attack exploits a recent block propagation protocol introduced in April 2016. The protocol prescribes a Bitcoin node to select 3 neighbors that can send new blocks unsolicited. These neighbors are selected based on their recent performance in providing blocks quickly. The adversary induces the victim to select 3 attack nodes by having attack nodes send valid blocks to the victim more quickly than other neighbors. For this purpose, the adversary deploys a handful of light weight nodes so that the adversary itself receives new blocks faster. The adversary then performs the attack to delay blocks propagated to the victim. We implement the attack on top of current default Bitcoin protocol We deploy the attack nodes in multiple locations around the globe and randomly select victim nodes. Depending on the round-trip time between the adversary and the victim, 50%-85% of the blocks could be delayed to the victim. We further show that the adoption of light weight nodes greatly increases the attack probability by 15% in average. Finally, we propose several countermeasures to mitigate this eclipse attack.
Routh, Caleb, DeCrescenzo, Brandon, Roy, Swapnoneel.  2018.  Attacks and vulnerability analysis of e-mail as a password reset point. 2018 Fourth International Conference on Mobile and Secure Services (MobiSecServ). :1—5.
In this work, we perform security analysis of using an e-mail as a self-service password reset point, and exploit some of the vulnerabilities of e-mail servers' forgotten password reset paths. We perform and illustrate three different attacks on a personal Email account, using a variety of tools such as: public knowledge attainable through social media or public records to answer security questions and execute a social engineering attack, hardware available to the public to perform a man in the middle attack, and free software to perform a brute-force attack on the login of the email account. Our results expose some of the inherent vulnerabilities in using emails as password reset points. The findings are extremely relevant to the security of mobile devices since users' trend has leaned towards usage of mobile devices over desktops for Internet access.
2020-08-24
Liu, Hongling.  2019.  Research on Feasibility Path of Technology Supervision and Technology Protection in Big Data Environment. 2019 International Conference on Intelligent Transportation, Big Data Smart City (ICITBS). :293–296.
Big data will bring revolutionary changes from life to thinking for society as a whole. At the same time, the massive data and potential value of big data are subject to many security risks. Aiming at the above problems, a data privacy protection model for big data platform is proposed. First, the data privacy protection model of big data for data owners is introduced in detail, including protocol design, logic design, complexity analysis and security analysis. Then, the query privacy protection model of big data for ordinary users is introduced in detail, including query protocol design and query mode design. Complexity analysis and safety analysis are performed. Finally, a stand-alone simulation experiment is built for the proposed privacy protection model. Experimental data is obtained and analyzed. The feasibility of the privacy protection model is verified.
Gao, Hongbiao, Li, Jianbin, Cheng, Jingde.  2019.  Industrial Control Network Security Analysis and Decision-Making by Reasoning Method Based on Strong Relevant Logic. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :289–294.
To improve production efficiency, more industrial control systems are connected to IT networks, and more IT technologies are applied to industrial control networks, network security has become an important problem. Industrial control network security analysis and decision-making is a effective method to solve the problem, which can predict risks and support to make decisions before the actual fault of the industrial control network system has not occurred. This paper proposes a security analysis and decision-making method with forward reasoning based on strong relevant logic for industrial control networks. The paper presents a case study in security analysis and decision-making for industrial control networks. The result of the case study shows that the proposed method is effective.
2020-08-17
Musa, Tanvirali, Yeo, Kheng Cher, Azam, Sami, Shanmugam, Bharanidharan, Karim, Asif, Boer, Friso De, Nur, Fernaz Narin, Faisal, Fahad.  2019.  Analysis of Complex Networks for Security Issues using Attack Graph. 2019 International Conference on Computer Communication and Informatics (ICCCI). :1–6.
Organizations perform security analysis for assessing network health and safe-guarding their growing networks through Vulnerability Assessments (AKA VA Scans). The output of VA scans is reports on individual hosts and its vulnerabilities, which, are of little use as the origin of the attack can't be located from these. Attack Graphs, generated without an in-depth analysis of the VA reports, are used to fill in these gaps, but only provide cursory information. This study presents an effective model of depicting the devices and the data flow that efficiently identifies the weakest nodes along with the concerned vulnerability's origin.The complexity of the attach graph using MulVal has been greatly reduced using the proposed approach of using the risk and CVSS base score as evaluation criteria. This makes it easier for the user to interpret the attack graphs and thus reduce the time taken needed to identify the attack paths and where the attack originates from.