Visible to the public Biblio

Filters: Keyword is artificial intelligence technologies  [Clear All Filters]
Ajenaghughrure, I. B., Sousa, S. C. da Costa, Lamas, D..  2020.  Risk and Trust in artificial intelligence technologies: A case study of Autonomous Vehicles. 2020 13th International Conference on Human System Interaction (HSI). :118–123.
This study investigates how risk influences users' trust before and after interactions with technologies such as autonomous vehicles (AVs'). Also, the psychophysiological correlates of users' trust from users” eletrodermal activity responses. Eighteen (18) carefully selected participants embark on a hypothetical trip playing an autonomous vehicle driving game. In order to stay safe, throughout the drive experience under four risk conditions (very high risk, high risk, low risk and no risk) that are based on automotive safety and integrity levels (ASIL D, C, B, A), participants exhibit either high or low trust by evaluating the AVs' to be highly or less trustworthy and consequently relying on the Artificial intelligence or the joystick to control the vehicle. The result of the experiment shows that there is significant increase in users' trust and user's delegation of controls to AVs' as risk decreases and vice-versa. In addition, there was a significant difference between user's initial trust before and after interacting with AVs' under varying risk conditions. Finally, there was a significant correlation in users' psychophysiological responses (electrodermal activity) when exhibiting higher and lower trust levels towards AVs'. The implications of these results and future research opportunities are discussed.
Whyte, C..  2020.  Problems of Poison: New Paradigms and "Agreed" Competition in the Era of AI-Enabled Cyber Operations. 2020 12th International Conference on Cyber Conflict (CyCon). 1300:215–232.
Few developments seem as poised to alter the characteristics of security in the digital age as the advent of artificial intelligence (AI) technologies. For national defense establishments, the emergence of AI techniques is particularly worrisome, not least because prototype applications already exist. Cyber attacks augmented by AI portend the tailored manipulation of human vectors within the attack surface of important societal systems at great scale, as well as opportunities for calamity resulting from the secondment of technical skill from the hacker to the algorithm. Arguably most important, however, is the fact that AI-enabled cyber campaigns contain great potential for operational obfuscation and strategic misdirection. At the operational level, techniques for piggybacking onto routine activities and for adaptive evasion of security protocols add uncertainty, complicating the defensive mission particularly where adversarial learning tools are employed in offense. Strategically, AI-enabled cyber operations offer distinct attempts to persistently shape the spectrum of cyber contention may be able to pursue conflict outcomes beyond the expected scope of adversary operation. On the other, AI-augmented cyber defenses incorporated into national defense postures are likely to be vulnerable to "poisoning" attacks that predict, manipulate and subvert the functionality of defensive algorithms. This article takes on two primary tasks. First, it considers and categorizes the primary ways in which AI technologies are likely to augment offensive cyber operations, including the shape of cyber activities designed to target AI systems. Then, it frames a discussion of implications for deterrence in cyberspace by referring to the policy of persistent engagement, agreed competition and forward defense promulgated in 2018 by the United States. Here, it is argued that the centrality of cyberspace to the deployment and operation of soon-to-be-ubiquitous AI systems implies new motivations for operation within the domain, complicating numerous assumptions that underlie current approaches. In particular, AI cyber operations pose unique measurement issues for the policy regime.