Visible to the public Biblio

Found 311 results

Filters: Keyword is reliability  [Clear All Filters]
Suresh, V., Ramesh, M.K., Shadruddin, Sheikh, Paul, Tapobrata, Bhattacharya, Anirban, Ahmad, Abrar.  2021.  Design and Application of Converged Infrastructure through Virtualization Technology in Grid Operation Control Center in North Eastern Region of India. 2020 3rd International Conference on Energy, Power and Environment: Towards Clean Energy Technologies. :1–5.
Modern day grid operation requires multiple interlinked applications and many automated processes at control center for monitoring and operation of grid. Information technology integrated with operational technology plays a critical role in grid operation. Computing resource requirements of these software applications varies widely and includes high processing applications, high Input/Output (I/O) sensitive applications and applications with low resource requirements. Present day grid operation control center uses various applications for load despatch schedule management, various real-time analytics & optimization applications, post despatch analysis and reporting applications etc. These applications are integrated with Operational Technology (OT) like Data acquisition system / Energy management system (SCADA/EMS), Wide Area Measurement System (WAMS) etc. This paper discusses various design considerations and implementation of converged infrastructure through virtualization technology by consolidation of servers and storages using multi-cluster approach to meet high availability requirement of the applications and achieve desired objectives of grid control center of north eastern region in India. The process involves weighing benefits of different architecture solution, grouping of application hosts, making multiple clusters with reliability and security considerations, and designing suitable infrastructure to meet all end objectives. Reliability, enhanced resource utilization, economic factors, storage and physical node selection, integration issues with OT systems and optimization of cost are the prime design considerations. Modalities adopted to minimize downtime of critical systems for grid operation during migration from the existing infrastructure and integration with OT systems of North Eastern Regional Load Despatch Center are also elaborated in this paper.
Palmo, Yangchen, Tanimoto, Shigeaki, Sato, Hiroyuki, Kanai, Atsushi.  2021.  IoT Reliability Improvement Method for Secure Supply Chain Management. 2021 IEEE 10th Global Conference on Consumer Electronics (GCCE). :364—365.

With the rapid development of IoT in recent years, IoT is increasingly being used as an endpoint of supply chains. In general, as the majority of data is now being stored and shared over the network, information security is an important issue in terms of secure supply chain management. In response to cyber security breaches and threats, there has been much research and development on the secure storage and transfer of data over the network. However, there is a relatively limited amount of research and proposals for the security of endpoints, such as IoT linked in the supply chain network. In addition, it is difficult to ensure reliability for IoT itself due to a lack of resources such as CPU power and storage. Ensuring the reliability of IoT is essential when IoT is integrated into the supply chain. Thus, in order to secure the supply chain, we need to improve the reliability of IoT, the endpoint of the supply chain. In this work, we examine the use of IoT gateways, client certificates, and IdP as methods to compensate for the lack of IoT resources. The results of our qualitative evaluation demonstrate that using the IdP method is the most effective.

Kieras, Timothy, Farooq, Muhammad Junaid, Zhu, Quanyan.  2020.  RIoTS: Risk Analysis of IoT Supply Chain Threats. 2020 IEEE 6th World Forum on Internet of Things (WF-IoT). :1—6.
Securing the supply chain of information and communications technology (ICT) has recently emerged as a critical concern for national security and integrity. With the proliferation of Internet of Things (IoT) devices and their increasing role in controlling real world infrastructure, there is a need to analyze risks in networked systems beyond established security analyses. Existing methods in literature typically leverage attack and fault trees to analyze malicious activity and its impact. In this paper, we develop RIoTS, a security risk assessment framework borrowing from system reliability theory to incorporate the supply chain. We also analyze the impact of grouping within suppliers that may pose hidden risks to the systems from malicious supply chain actors. The results show that the proposed analysis is able to reveal hidden threats posed to the IoT ecosystem from potential supplier collusion.
Pennekamp, Jan, Alder, Fritz, Matzutt, Roman, Mühlberg, Jan Tobias, Piessens, Frank, Wehrle, Klaus.  2020.  Secure End-to-End Sensing in Supply Chains. 2020 IEEE Conference on Communications and Network Security (CNS). :1—6.
Trust along digitalized supply chains is challenged by the aspect that monitoring equipment may not be trustworthy or unreliable as respective measurements originate from potentially untrusted parties. To allow for dynamic relationships along supply chains, we propose a blockchain-backed supply chain monitoring architecture relying on trusted hardware. Our design provides a notion of secure end-to-end sensing of interactions even when originating from untrusted surroundings. Due to attested checkpointing, we can identify misinformation early on and reliably pinpoint the origin. A blockchain enables long-term verifiability for all (now trustworthy) IoT data within our system even if issues are detected only after the fact. Our feasibility study and cost analysis further show that our design is indeed deployable in and applicable to today’s supply chain settings.
Kieras, Timothy, Farooq, Muhammad Junaid, Zhu, Quanyan.  2020.  Modeling and Assessment of IoT Supply Chain Security Risks: The Role of Structural and Parametric Uncertainties. 2020 IEEE Security and Privacy Workshops (SPW). :163—170.

Supply chain security threats pose new challenges to security risk modeling techniques for complex ICT systems such as the IoT. With established techniques drawn from attack trees and reliability analysis providing needed points of reference, graph-based analysis can provide a framework for considering the role of suppliers in such systems. We present such a framework here while highlighting the need for a component-centered model. Given resource limitations when applying this model to existing systems, we study various classes of uncertainties in model development, including structural uncertainties and uncertainties in the magnitude of estimated event probabilities. Using case studies, we find that structural uncertainties constitute a greater challenge to model utility and as such should receive particular attention. Best practices in the face of these uncertainties are proposed.

Teichel, Kristof, Lehtonen, Tapio, Wallin, Anders.  2021.  Assessing Time Transfer Methods for Accuracy and Reliability : Navigating the Time Transfer Trade-off Triangle. 2021 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS). :1—4.
We present a collected overview on how to assess both the accuracy and reliability levels and relate them to the required effort, for different digital methods of synchronizing clocks. The presented process is intended for end users who require time synchronization but are not certain about how to judge at least one of the aspects. It can not only be used on existing technologies but should also be transferable to many future approaches. We further relate this approach to several examples. We discuss in detail the approach of medium-range White Rabbit connections over dedicated fibers, a method that occupies an extreme corner in the evaluation, where the effort is exceedingly high, but also yields excellent accuracy and significant reliability.
Wulf, Cornelia, Willig, Michael, Göhringer, Diana.  2021.  A Survey on Hypervisor-based Virtualization of Embedded Reconfigurable Systems. 2021 31st International Conference on Field-Programmable Logic and Applications (FPL). :249–256.
The increase of size, capabilities, and speed of FPGAs enables the shared usage of reconfigurable resources by multiple applications and even operating systems. While research on FPGA virtualization in HPC-datacenters and cloud is already well advanced, it is a rather new concept for embedded systems. The necessity for FPGA virtualization of embedded systems results from the trend to integrate multiple environments into the same hardware platform. As multiple guest operating systems with different requirements, e.g., regarding real-time, security, safety, or reliability share the same resources, the focus of research lies on isolation under the constraint of having minimal impact on the overall system. Drivers for this development are, e.g., computation intensive AI-based applications in the automotive or medical field, embedded 5G edge computing systems, or the consolidation of electronic control units (ECUs) on a centralized MPSoC with the goal to increase reliability by reducing complexity. This survey outlines key concepts of hypervisor-based virtualization of embedded reconfigurable systems. Hypervisor approaches are compared and classified into FPGA-based hypervisors, MPSoC-based hypervisors and hypervisors for distributed embedded reconfigurable systems. Strong points and limitations are pointed out and future trends for virtualization of embedded reconfigurable systems are identified.
Sahoo, Siva Satyendra, Kumar, Akash, Decky, Martin, Wong, Samuel C.B., Merrett, Geoff V., Zhao, Yinyuan, Wang, Jiachen, Wang, Xiaohang, Singh, Amit Kumar.  2021.  Emergent Design Challenges for Embedded Systems and Paths Forward: Mixed-criticality, Energy, Reliability and Security Perspectives: Special Session Paper. 2021 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS). :1–10.
Modern embedded systems need to cater for several needs depending upon the application domain in which they are deployed. For example, mixed-critically needs to be considered for real-time and safety-critical systems and energy for battery-operated systems. At the same time, many of these systems demand for their reliability and security as well. With electronic systems being used for increasingly varying type of applications, novel challenges have emerged. For example, with the use of embedded systems in increasingly complex applications that execute tasks with varying priorities, mixed-criticality systems present unique challenges to designing reliable systems. The large design space involved in implementing cross-layer reliability in heterogeneous systems, particularly for mixed-critical systems, poses new research problems. Further, malicious security attacks on these systems pose additional extraordinary challenges in the system design. In this paper, we cover both the industry and academia perspectives of the challenges posed by these emergent aspects of system design towards designing highperformance, energy-efficient, reliable and/or secure embedded systems. We also provide our views on paths forward.
Liu, Kui, Koyuncu, Anil, Kim, Dongsun, Bissyandè, Tegawende F..  2019.  AVATAR: Fixing Semantic Bugs with Fix Patterns of Static Analysis Violations. 2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER). :1–12.
Fix pattern-based patch generation is a promising direction in Automated Program Repair (APR). Notably, it has been demonstrated to produce more acceptable and correct patches than the patches obtained with mutation operators through genetic programming. The performance of pattern-based APR systems, however, depends on the fix ingredients mined from fix changes in development histories. Unfortunately, collecting a reliable set of bug fixes in repositories can be challenging. In this paper, we propose to investigate the possibility in an APR scenario of leveraging code changes that address violations by static bug detection tools. To that end, we build the AVATAR APR system, which exploits fix patterns of static analysis violations as ingredients for patch generation. Evaluated on the Defects4J benchmark, we show that, assuming a perfect localization of faults, AVATAR can generate correct patches to fix 34/39 bugs. We further find that AVATAR yields performance metrics that are comparable to that of the closely-related approaches in the literature. While AVATAR outperforms many of the state-of-the-art pattern-based APR systems, it is mostly complementary to current approaches. Overall, our study highlights the relevance of static bug finding tools as indirect contributors of fix ingredients for addressing code defects identified with functional test cases.
de Biase, Maria Stella, Marulli, Fiammetta, Verde, Laura, Marrone, Stefano.  2021.  Improving Classification Trustworthiness in Random Forests. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :563—568.
Machine learning algorithms are becoming more and more widespread in industrial as well as in societal settings. This diffusion is starting to become a critical aspect of new software-intensive applications due to the need of fast reactions to changes, even if temporary, in data. This paper investigates on the improvement of reliability in the Machine Learning based classification by extending Random Forests with Bayesian Network models. Such models, combined with a mechanism able to adjust the reputation level of single learners, may improve the overall classification trustworthiness. A small example taken from the healthcare domain is presented to demonstrate the proposed approach.
Gao, Hongxia, Yu, Zhenhua, Cong, Xuya, Wang, Jing.  2021.  Trustworthiness Evaluation of Smart Grids Using GSPN. 2021 IEEE International Conference on Networking, Sensing and Control (ICNSC). 1:1—7.
Smart grids are one of the most important applications of cyber-physical systems. They intelligently transmit energy to customers by information technology, and have replaced the traditional power grid and are widely used. However, smart grids are vulnerable to cyber-attacks. Once attacked, it will cause great losses and lose the trust of customers. Therefore, it is important to evaluate the trustworthiness of smart grids. In order to evaluate the trustworthiness of smart grids, this paper uses a generalized stochastic Petri net (GSPN) to model smart grids. Considering various security threats that smart grids may face, we propose a general GSPN model for smart grids, which evaluates trustworthiness from three metrics of reliability, availability, and integrity by analyzing steady-state and transient probabilities. Finally, we obtain the value of system trustworthiness and simulation results show that the feasibility and effectiveness of our model for smart grids trustworthiness.
N, Praveena., Vivekanandan, K..  2021.  A Study on Shilling Attack Identification in SAN using Collaborative Filtering Method based Recommender Systems. 2021 International Conference on Computer Communication and Informatics (ICCCI). :1—5.
In Social Aware Network (SAN) model, the elementary actions focus on investigating the attributes and behaviors of the customer. This analysis of customer attributes facilitate in the design of highly active and improved protocols. In specific, the recommender systems are highly vulnerable to the shilling attack. The recommender system provides the solution to solve the issues like information overload. Collaborative filtering based recommender systems are susceptible to shilling attack known as profile injection attacks. In the shilling attack, the malicious users bias the output of the system's recommendations by adding the fake profiles. The attacker exploits the customer reviews, customer ratings and fake data for the processing of recommendation level. It is essential to detect the shilling attack in the network for sustaining the reliability and fairness of the recommender systems. This article reviews the most prominent issues and challenges of shilling attack. This paper presents the literature survey which is contributed in focusing of shilling attack and also describes the merits and demerits with its evaluation metrics like attack detection accuracy, precision and recall along with different datasets used for identifying the shilling attack in SAN network.
Henkel, Werner, Namachanja, Maria.  2021.  A Simple Physical-Layer Key Generation for Frequency-Division Duplexing (FDD). 2021 15th International Conference on Signal Processing and Communication Systems (ICSPCS). :1—6.
Common randomness of channels offers the possibility to create cryptographic keys without the need for a key exchange procedure. Channel reciprocity for TDD (time-division duplexing) systems has been used for this purpose many times. FDD (frequency-division duplexing) systems, however, were long considered to not provide any usable symmetry. However, since the scattering transmission parameters S\textbackslashtextlessinf\textbackslashtextgreater12\textbackslashtextless/inf\textbackslashtextgreater and S\textbackslashtextlessinf\textbackslashtextgreater21\textbackslashtextless/inf\textbackslashtextgreater would ideally be the same due to reciprocity, when using neighboring frequency ranges for both directions, they would just follow a continuous curve when putting them next to each other. To not rely on absolute phase, we use phase differences between antennas and apply a polynomial curve fitting, thereafter, quantize the midpoint between the two frequency ranges with the two measurement directions. This is shown to work even with some spacing between the two bands. For key reconciliation, we force the measurement point from one direction to be in the midpoint of the quantization interval by a grid shift (or likewise measurement data shift). Since the histogram over the quantization intervals does not follow a uniform distribution, some source coding / hashing will be necessary. The key disagreement rate toward an eavesdropper was found to be close to 0.5. Additionally, when using an antenna array, a random permutation of antenna measurements can even further improve the protection against eavesdropping.
Farrukh, Yasir Ali, Ahmad, Zeeshan, Khan, Irfan, Elavarasan, Rajvikram Madurai.  2021.  A Sequential Supervised Machine Learning Approach for Cyber Attack Detection in a Smart Grid System. 2021 North American Power Symposium (NAPS). :1—6.
Modern smart grid systems are heavily dependent on Information and Communication Technology, and this dependency makes them prone to cyber-attacks. The occurrence of a cyber-attack has increased in recent years resulting in substantial damage to power systems. For a reliable and stable operation, cyber protection, control, and detection techniques are becoming essential. Automated detection of cyberattacks with high accuracy is a challenge. To address this, we propose a two-layer hierarchical machine learning model having an accuracy of 95.44 % to improve the detection of cyberattacks. The first layer of the model is used to distinguish between the two modes of operation - normal state or cyberattack. The second layer is used to classify the state into different types of cyberattacks. The layered approach provides an opportunity for the model to focus its training on the targeted task of the layer, resulting in improvement in model accuracy. To validate the effectiveness of the proposed model, we compared its performance against other recent cyber attack detection models proposed in the literature.
Mukherjee, Debottam, Chakraborty, Samrat, Banerjee, Ramashis, Bhunia, Joydeep.  2021.  A Novel Real-Time False Data Detection Strategy for Smart Grid. 2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC). :1—6.
State estimation algorithm ensures an effective realtime monitoring of the modern smart grid leading to an accurate determination of the current operating states. Recently, a new genre of data integrity attacks namely false data injection attack (FDIA) has shown its deleterious effects by bypassing the traditional bad data detection technique. Modern grid operators must detect the presence of such attacks in the raw field measurements to guarantee a safe and reliable operation of the grid. State forecasting based FDIA identification schemes have recently shown its efficacy by determining the deviation of the estimated states due to an attack. This work emphasizes on a scalable deep learning state forecasting model which can accurately determine the presence of FDIA in real-time. An optimal set of hyper-parameters of the proposed architecture leads to an effective forecasting of the operating states with minimal error. A diligent comparison between other state of the art forecasting strategies have promoted the effectiveness of the proposed neural network. A comprehensive analysis on the IEEE 14 bus test bench effectively promotes the proposed real-time attack identification strategy.
Tashman, Deemah H., Hamouda, Walaa.  2021.  Secrecy Analysis for Energy Harvesting-Enabled Cognitive Radio Networks in Cascaded Fading Channels. ICC 2021 - IEEE International Conference on Communications. :1—6.
Physical-layer security (PLS) for an underlay cognitive radio network (CRN)-based simultaneous wireless information and power transfer (SWIPT) over cascaded κ-µ fading channels is investigated. The network is composed of a pair of secondary users (SUs), a primary user (PU) receiver, and an eavesdropper attempting to intercept the data shared by the SUs. To improve the SUs’ data transmission security, we assume a full-duplex (FD) SU destination, which employs energy harvesting (EH) to extract the power required for generating jamming signals to be emitted to confound the eavesdropper. Two scenarios are presented and compared; harvesting and non-harvesting eavesdropper. Moreover, a trade-off between the system’s secrecy and reliability is explored. PLS is studied in terms of the probability of non-zero secrecy capacity and the intercept probability, whereas the reliability is studied in terms of the outage probability. Results reveal the great impact of jamming over the improvement of the SUs’ secrecy. Additionally, our work indicates that studying the system’s secrecy over cascaded channels has an influence on the system’s PLS that cannot be neglected.
Pinto, Thyago M. S., Vilela, João P., Gomes, Marco A. C., Harrison, Willie K..  2021.  Keyed Polar Coding for Physical-Layer Security without Channel State Information. ICC 2021 - IEEE International Conference on Communications. :1–6.
Polar codes have been shown to provide an effective mechanism for achieving physical-layer security over various wiretap channels. A majority of these schemes require channel state information (CSI) at the encoder for both intended receivers and eavesdroppers. In this paper, we consider a polar coding scheme for secrecy over a Gaussian wiretap channel when no CSI is available. We show that the availability of a shared keystream between friendly parties allows polar codes to be used for both secure and reliable communications, even when the eavesdropper knows a large fraction of the keystream. The scheme relies on a predetermined strategy for partitioning the bits to be encoded into a set of frozen bits and a set of information bits. The frozen bits are filled with bits from the keystream, and we evaluate the security gap when the cyclic redundancy check-aided successive cancellation list decoder is used at both receivers in the wiretap channel model.
El-Halabi, Mustafa, Mokbel, Hoda.  2021.  Physical-Layer Security for 5G Wireless Networks: Sharing Non-Causal CSI with the Eavesdropper. IEEE EUROCON 2021 - 19th International Conference on Smart Technologies. :343–347.
Physical-layer security is a new paradigm that offers data protection against eavesdropping in wireless 5G networks. In this context, the Gaussian channel is a typical model that captures the practical aspects of confidentially transmitting a message through the wireless medium. In this paper, we consider the peculiar case of transmitting a message through a wireless, state-dependent channel which is prone to eavesdropping, where the state knowledge is non-causally known and shared between the sender and the eavesdropper. We show that a novel structured coding scheme, which combines random coding arguments and the dirty-paper coding technique, achieves the fundamental limit of secure and reliable communication for the considered model.
Yudin, Oleksandr, Artemov, Volodymyr, Krasnorutsky, Andrii, Barannik, Vladimir, Tupitsya, Ivan, Pris, Gennady.  2021.  Creating a Mathematical Model for Estimating the Impact of Errors in the Process of Reconstruction of Non-Uniform Code Structures on the Quality of Recoverable Video Images. 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT). :40—45.
Existing compression coding technologies are investigated using a statistical approach. The fundamental strategies used in the process of statistical coding of video information data are analyzed. Factors that have a significant impact on the reliability and efficiency of video delivery in the process of statistical coding are analyzed. A model for estimating the impact of errors in the process of reconstruction of uneven code structures on the quality of recoverable video images is being developed.The influence of errors that occur in data transmission channels on the reliability of the reconstructed video image is investigated.
Yudin, Oleksandr, Cherniak, Andrii, Havrylov, Dmytro, Hurzhii, Pavlo, Korolyova, Natalia, Sidchenko, Yevhenii.  2021.  Video Coding Method in a Condition of Providing Security and Promptness of Delivery. 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT). :26—30.
In the course of the research, the research of discriminatory methods of handling video information resource based on the JPEG platform was carried out. This research showed a high interest of the scientific world in identifying important data at different phases of handling. However, the discriminatory handling of the video information resource after the quantization phase is not well understood. Based on the research data, the goal is to find possible ways to operation a video information resource based on a JPEG platform in order to identify important data in a telecommunications system. At the same time, the proposed strategies must provide the required pace of dynamic picture grade and hiding in the context of limited bandwidth. The fulfillment of the condition with limited bandwidth is achieved through the use of a lossless compression algorism based on arithmetic coding. The purpose of the study is considered to be achieved if the following requirements are met:1.Reduction of the volume of dynamic pictures by 30% compared to the initial amount;2.The quality pace is confirmed by an estimate of the peak signal-to-noise ratio for an authorized user, which is Ψauthor ≥ 20 dB;3.The pace of hiding is confirmed by an estimate of the peak signal-to-noise ratio for unauthorized access, which is Ψunauthor ≤ 9 dBThe first strategy is to use encryption tables. The advantage of this strategy is its high hiding strength.The second strategy is the important matrix method. The advantage of this strategy is higher performance.Thus, the goal of the study on the development of possible ways of handling a video information resource based on a JPEG platform in order to identify important data in a telecommunication system with the given requirements is achieved.
Nair, P. Rajitha, Dorai, D. Ramya.  2021.  Evaluation of Performance and Security of Proof of Work and Proof of Stake using Blockchain. 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV). :279–283.
Storing information in Blockchain has become in vogue in the Technical and Communication Industry with many major players jumping into the bandwagon. Two of the most prominent enablers for Blockchain are “Proof of Work” and “Proof of Stake”. Proof of work includes the members solving the complex problem without having a particular need for the solution (except as evidence, of course), which absorbs a large number of resources in turn. The proof of stake doesn’t require as many resources to enable Blockchain secure information store. Both methodologies have their advantages and their shortcomings. The article attempts to review the current literature and collate the results of the study to measure the performance of both the methodologies and to arrive at a consensus regarding either or both methodologies to implement Blockchain to store data. Post reviewing the performance aspects and security features of both Proofs of Stake and Proof of Work the reviewer attempts to arrive at a secure and better performing blended Blockchain methodology that has wide industry practical application.
Dekarske, Jason, Joshi, Sanjay S..  2021.  Human Trust of Autonomous Agent Varies With Strategy and Capability in Collaborative Grid Search Task. 2021 IEEE 2nd International Conference on Human-Machine Systems (ICHMS). :1–6.
Trust is an important emerging area of study in human-robot cooperation. Many studies have begun to look at the issue of robot (agent) capability as a predictor of human trust in the robot. However, the assumption that agent capability is the sole predictor of human trust could underestimate the complexity of the problem. This study aims to investigate the effects of agent-strategy and agent-capability in a visual search task. Fourteen subjects were recruited to partake in a web-based grid search task. They were each paired with a series of autonomous agents to search an on-screen grid to find a number of outlier objects as quickly as possible. Both the human and agent searched the grid concurrently and the human was able to see the movement of the agent. Each trial, a different autonomous agent with its assigned capability, used one of three search strategies to assist their human counterpart. After each trial, the autonomous agent reported the number of outliers it found, and the human subject was asked to determine the total number of outliers in the area. Some autonomous agents reported only a fraction of the outliers they encountered, thus coding a varying level of agent capability. Human subjects then evaluated statements related to the behavior, reliability, and trust of the agent. The results showed increased measures of trust and reliability with increasing capability. Additionally, the most legible search strategies received the highest average ratings in a measure of familiarity. Remarkably, given no prior information about capabilities or strategies that they would see, subjects were able to determine consistent trustworthiness of the agent. Furthermore, both capability and strategy of the agent had statistically significant effects on the human’s trust in the agent.
Souror, Samia, El-Fishawy, Nawal, Badawy, Mohammed.  2021.  SCKHA: A New Stream Cipher Algorithm Based on Key Hashing and Splitting Technique. 2021 International Conference on Electronic Engineering (ICEEM). :1–7.
Cryptographic algorithms are playing an important role in the information security field. Strong and unbreakable algorithms provide high security and good throughput. The strength of any encryption algorithm is basically based on the degree of difficulty to obtain the encryption key by such cyber-attacks as brute. It is supposed that the bigger the key size, the more difficult it is to compute the key. But increasing the key size will increase both the computational complexity and the processing time of algorithms. In this paper, we proposed a reliable, effective, and more secure symmetric stream cipher algorithm for encryption and decryption called Symmetric Cipher based on Key Hashing Algorithm (SCKHA). The idea of this algorithm is based on hashing and splitting the encryption symmetric key. Hashing the key will hide the encrypted key to prevent any intruder from forging the hash code, and, thus, it satisfies the purpose of security, authentication, and integrity for a message on the network. In addition, the algorithm is secure against a brute-force attack by increasing the resources it takes for testing each possible key. Splitting the hashed value of the encryption key will divide the hashed key into two key chunks. The encryption process performed using such one chunk based on some calculations on the plaintext. This algorithm has three advantages that are represented in computational simplicity, security and efficiency. Our algorithm is characterized by its ability to search on the encrypted data where the plaintext character is represented by two ciphertext characters (symbols).
Jin, Shiyi, Chung, Jin-Gyun, Xu, Yinan.  2021.  Signature-Based Intrusion Detection System (IDS) for In-Vehicle CAN Bus Network. 2021 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.

In-vehicle CAN (Controller Area Network) bus network does not have any network security protection measures, which is facing a serious network security threat. However, most of the intrusion detection solutions requiring extensive computational resources cannot be implemented in in- vehicle network system because of the resource constrained ECUs. To add additional hardware or to utilize cloud computing, we need to solve the cost problem and the reliable communication requirement between vehicles and cloud platform, which is difficult to be applied in a short time. Therefore, we need to propose a short-term solution for automobile manufacturers. In this paper, we propose a signature-based light-weight intrusion detection system, which can be applied directly and promptly to vehicle's ECUs (Electronic Control Units). We detect the anomalies caused by several attack modes on CAN bus from real-world scenarios, which provide the basis for selecting signatures. Experimental results show that our method can effectively detect CAN traffic related anomalies. For the content related anomalies, the detection ratio can be improved by exploiting the relationship between the signals.

Claude, Tuyisenge Jean, Viviane, Ishimwe, Paul, Iradukunda Jean, Didacienne, Mukanyiligira.  2021.  Development of Security Starting System for Vehicles Based on IoT. 2021 International Conference on Information Technology (ICIT). :505–510.
The transportation system is becoming tremendously important in today's human activities and the number of urban vehicles grows rapidly. The vehicle theft also has become a shared concern for all vehicle owners. However, the present anti-theft system which maybe high reliable, lack of proper mechanism for preventing theft before it happens. This work proposes the internet of things based smart vehicle security staring system; efficient security provided to the vehicle owners relies on securing car ignition system by using a developed android application running on smart phone connected to the designed system installed in vehicle. With this system it is non- viable to access the vehicle's functional system in case the ignition key has been stolen or lost. It gives the drivers the ability to stay connected with their vehicle. Whenever the ignition key is stolen or lost, it is impossible to start the vehicle as the ignition system is still locked on the vehicle start and only the authorized person will be able to start the vehicle at convenient time with the combination of ignition key and smart phone application. This study proposes to design the system that uses node MCU, Bluetooth low energy (BLE), transistors, power relays and android smartphone in system testing. In addition, it is cost effective and once installed in the vehicle there is no more cost of maintenance.