Visible to the public Biblio

Filters: Keyword is bandwidth requirements  [Clear All Filters]
2020
Dubey, R., Louis, S. J., Sengupta, S..  2020.  Evolving Dynamically Reconfiguring UAV-hosted Mesh Networks. 2020 IEEE Congress on Evolutionary Computation (CEC). :1–8.
We use potential fields tuned by genetic algorithms to dynamically reconFigure unmanned aerial vehicles networks to serve user bandwidth needs. Such flying network base stations have applications in the many domains needing quick temporary networked communications capabilities such as search and rescue in remote areas and security and defense in overwatch and scouting. Starting with an initial deployment that covers an area and discovers how users are distributed across this area of interest, tuned potential fields specify subsequent movement. A genetic algorithm tunes potential field parameters to reposition UAVs to create and maintain a mesh network that maximizes user bandwidth coverage and network lifetime. Results show that our evolutionary adaptive network deployment algorithm outperforms the current state of the art by better repositioning the unmanned aerial vehicles to provide longer coverage lifetimes while serving bandwidth requirements. The parameters found by the genetic algorithm on four training scenarios with different user distributions lead to better performance than achieved by the state of the art. Furthermore, these parameters also lead to superior performance in three never before seen scenarios indicating that our algorithm finds parameter values that generalize to new scenarios with different user distributions.