Visible to the public Biblio

Found 838 results

Filters: Keyword is Internet  [Clear All Filters]
2021-10-12
Chang, Kai Chih, Nokhbeh Zaeem, Razieh, Barber, K. Suzanne.  2020.  Is Your Phone You? How Privacy Policies of Mobile Apps Allow the Use of Your Personally Identifiable Information 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :256–262.
People continue to store their sensitive information in their smart-phone applications. Users seldom read an app's privacy policy to see how their information is being collected, used, and shared. In this paper, using a reference list of over 600 Personally Identifiable Information (PII) attributes, we investigate the privacy policies of 100 popular health and fitness mobile applications in both Android and iOS app markets to find the set of personal information these apps collect, use and share. The reference list of PII was independently built from a longitudinal study at The University of Texas investigating thousands of identity theft and fraud cases where PII attributes and associated value and risks were empirically quantified. This research leverages the reference PII list to identify and analyze the value of personal information collected by the mobile apps and the risk of disclosing this information. We found that the set of PII collected by these mobile apps covers 35% of the entire reference set of PII and, due to dependencies between PII attributes, these mobile apps have a likelihood of indirectly impacting 70% of the reference PII if breached. For a specific app, we discovered the monetary loss could reach \$1M if the set of sensitive data it collects is breached. We finally utilize Bayesian inference to measure risks of a set of PII gathered by apps: the probability that fraudsters can discover, impersonate and cause harm to the user by misusing only the PII the mobile apps collected.
2021-10-04
Alsoghyer, Samah, Almomani, Iman.  2020.  On the Effectiveness of Application Permissions for Android Ransomware Detection. 2020 6th Conference on Data Science and Machine Learning Applications (CDMA). :94–99.
Ransomware attack is posting a serious threat against Android devices and stored data that could be locked or/and encrypted by such attack. Existing solutions attempt to detect and prevent such attack by studying different features and applying various analysis mechanisms including static, dynamic or both. In this paper, recent ransomware detection solutions were investigated and compared. Moreover, a deep analysis of android permissions was conducted to identify significant android permissions that can discriminate ransomware with high accuracy before harming users' devices. Consequently, based on the outcome of this analysis, a permissions-based ransomware detection system is proposed. Different classifiers were tested to build the prediction model of this detection system. After the evaluation of the ransomware detection service, the results revealed high detection rate that reached 96.9%. Additionally, the newly permission-based android dataset constructed in this research will be made available to researchers and developers for future work.
2021-09-30
Mahmoud, Loreen, Praveen, Raja.  2020.  Network Security Evaluation Using Deep Neural Network. 2020 15th International Conference for Internet Technology and Secured Transactions (ICITST). :1–4.
One of the most significant systems in computer network security assurance is the assessment of computer network security. With the goal of finding an effective method for performing the process of security evaluation in a computer network, this paper uses a deep neural network to be responsible for the task of security evaluating. The DNN will be built with python on Spyder IDE, it will be trained and tested by 17 network security indicators then the output that we get represents one of the security levels that have been already defined. The maj or purpose is to enhance the ability to determine the security level of a computer network accurately based on its selected security indicators. The method that we intend to use in this paper in order to evaluate network security is simple, reduces the human factors interferences, and can obtain the correct results of the evaluation rapidly. We will analyze the results to decide if this method will enhance the process of evaluating the security of the network in terms of accuracy.
KOSE, Busra OZDENIZCI, BUK, Onur, MANTAR, Haci Ali, COSKUN, Vedat.  2020.  TrustedID: An Identity Management System Based on OpenID Connect Protocol. 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). :1–6.
Today, authentication and non-repudiation of actions are essential requirements for almost all mobile services. In this respect, various common identity systems (such as Facebook Login, Google Sign-In, Apple ID and many other) based on OpenID Connect protocol have been introduced that support easier password management for users, and reduce potential risks by securing the service provider and the user. With the widespread use of the Internet, smartphones can offer many services with rich content. The use of common identity systems on mobile devices with a high security level is becoming a more important requirement. At this point, MNOs (Mobile Network Operators) have a significant potential and capability for providing common identity services. The existing solutions based on Mobile Connect standard provide generally low level of assurance. Accordingly, there is an urgent need for a common identity system that provide higher level of assurance and security for service providers. This study presents a multi-factor authentication mechanism called TrustedID system that is based on Mobile Connect and OpenID Connect standards, and ensures higher level of assurance. The proposed system aims to use three identity factors of the user in order to access sensitive mobile services on the smartphone. The proposed authentication system will support improvement of new value-added services and also support the development of mobile ecosystem.
2021-09-21
Li, Mingxuan, Lv, Shichao, Shi, Zhiqiang.  2020.  Malware Detection for Industrial Internet Based on GAN. 2020 IEEE International Conference on Information Technology,Big Data and Artificial Intelligence (ICIBA). 1:475–481.
This thesis focuses on the detection of malware in industrial Internet. The basic flow of the detection of malware contains feature extraction and sample identification. API graph can effectively represent the behavior information of malware. However, due to the high algorithm complexity of solving the problem of subgraph isomorphism, the efficiency of analysis based on graph structure feature is low. Due to the different scales of API graph of different malicious codes, the API graph needs to be normalized. Considering the difficulties of sample collection and manual marking, it is necessary to expand the number of malware samples in industrial Internet. This paper proposes a method that combines PageRank with TF-IDF to process the API graph. Besides, this paper proposes a method to construct the adversarial samples of malwares based on GAN.
2021-09-07
Zebari, Rizgar R., Zeebaree, Subhi R. M., Sallow, Amira Bibo, Shukur, Hanan M., Ahmad, Omar M., Jacksi, Karwan.  2020.  Distributed Denial of Service Attack Mitigation Using High Availability Proxy and Network Load Balancing. 2020 International Conference on Advanced Science and Engineering (ICOASE). :174–179.
Nowadays, cybersecurity threat is a big challenge to all organizations that present their services over the Internet. Distributed Denial of Service (DDoS) attack is the most effective and used attack and seriously affects the quality of service of each E-organization. Hence, mitigation this type of attack is considered a persistent need. In this paper, we used Network Load Balancing (NLB) and High Availability Proxy (HAProxy) as mitigation techniques. The NLB is used in the Windows platform and HAProxy in the Linux platform. Moreover, Internet Information Service (IIS) 10.0 is implemented on Windows server 2016 and Apache 2 on Linux Ubuntu 16.04 as web servers. We evaluated each load balancer efficiency in mitigating synchronize (SYN) DDoS attack on each platform separately. The evaluation process is accomplished in a real network and average response time and average CPU are utilized as metrics. The results illustrated that the NLB in the Windows platform achieved better performance in mitigation SYN DDOS compared to HAProxy in the Linux platform. Whereas, the average response time of the Window webservers is reduced with NLB. However, the impact of the SYN DDoS on the average CPU usage of the IIS 10.0 webservers was more than those of the Apache 2 webservers.
Sudugala, A.U, Chanuka, W.H, Eshan, A.M.N, Bandara, U.C.S, Abeywardena, K.Y.  2020.  WANHEDA: A Machine Learning Based DDoS Detection System. 2020 2nd International Conference on Advancements in Computing (ICAC). 1:380–385.
In today's world computer communication is used almost everywhere and majority of them are connected to the world's largest network, the Internet. There is danger in using internet due to numerous cyber-attacks which are designed to attack Confidentiality, Integrity and Availability of systems connected to the internet. One of the most prominent threats to computer networking is Distributed Denial of Service (DDoS) Attack. They are designed to attack availability of the systems. Many users and ISPs are targeted and affected regularly by these attacks. Even though new protection technologies are continuously proposed, this immense threat continues to grow rapidly. Most of the DDoS attacks are undetectable because they act as legitimate traffic. This situation can be partially overcome by using Intrusion Detection Systems (IDSs). There are advanced attacks where there is no proper documented way to detect. In this paper authors present a Machine Learning (ML) based DDoS detection mechanism with improved accuracy and low false positive rates. The proposed approach gives inductions based on signatures previously extracted from samples of network traffic. Authors perform the experiments using four distinct benchmark datasets, four machine learning algorithms to address four of the most harmful DDoS attack vectors. Authors achieved maximum accuracy and compared the results with other applicable machine learning algorithms.
2021-08-17
Song, Guanglei, He, Lin, Wang, Zhiliang, Yang, Jiahai, Jin, Tao, Liu, Jieling, Li, Guo.  2020.  Towards the Construction of Global IPv6 Hitlist and Efficient Probing of IPv6 Address Space. 2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS). :1–10.
Fast IPv4 scanning has made sufficient progress in network measurement and security research. However, it is infeasible to perform brute-force scanning of the IPv6 address space. We can find active IPv6 addresses through scanning candidate addresses generated by the state-of-the-art algorithms, whose probing efficiency of active IPv6 addresses, however, is still very low. In this paper, we aim to improve the probing efficiency of IPv6 addresses in two ways. Firstly, we perform a longitudinal active measurement study over four months, building a high-quality dataset called hitlist with more than 1.3 billion IPv6 addresses distributed in 45.2k BGP prefixes. Different from previous work, we probe the announced BGP prefixes using a pattern-based algorithm, which makes our dataset overcome the problems of uneven address distribution and low active rate. Secondly, we propose an efficient address generation algorithm DET, which builds a density space tree to learn high-density address regions of the seed addresses in linear time and improves the probing efficiency of active addresses. On the public hitlist and our hitlist, we compare our algorithm DET against state-of-the-art algorithms and find that DET increases the de-aliased active address ratio by 10%, and active address (including aliased addresses) ratio by 14%, by scanning 50 million addresses.
2021-08-11
Garcia-Luna-Aceves, J.J., Ali Albalawi, Abdulazaz.  2020.  Connection-Free Reliable and Efficient Transport Services in the IP Internet. 2020 16th International Conference on Network and Service Management (CNSM). :1—7.
The Internet Transport Protocol (ITP) is introduced to support reliable end-to-end transport services in the IP Internet without the need for end-to-end connections, changes to the Internet routing infrastructure, or modifications to name-resolution services. Results from simulation experiments show that ITP outperforms the Transmission Control Protocol (TCP) and the Named Data Networking (NDN) architecture, which requires replacing the Internet Protocol (IP). In addition, ITP allows transparent content caching while enforcing privacy.
Huang, Cheng-Wei, Wu, Tien-Yi, Tai, Yuan, Shao, Ching-Hsuan, Chen, Lo-An, Tsai, Meng-Hsun.  2020.  Machine learning-based IP Camera identification system. 2020 International Computer Symposium (ICS). :426—430.
With the development of technology, application of the Internet in daily life is increasing, making our connection with the Internet closer. However, with the improvement of convenience, information security has become more and more important. How to ensure information security in a convenient living environment is a question worth discussing. For instance, the widespread deployment of IP-cameras has made great progress in terms of convenience. On the contrary, it increases the risk of privacy exposure. Poorly designed surveillance devices may be implanted with suspicious software, which might be a thorny issue to human life. To effectively identify vulnerable devices, we design an SDN-based identification system that uses machine learning technology to identify brands and probable model types by identifying packet features. The identifying results make it possible for further vulnerability analysis.
Brooks, Richard, Wang, Kuang-Ching, Oakley, Jon, Tusing, Nathan.  2020.  Global Internet Traffic Routing and Privacy. 2020 International Scientific and Technical Conference Modern Computer Network Technologies (MoNeTeC). :1—7.
Current Internet Protocol routing provides minimal privacy, which enables multiple exploits. The main issue is that the source and destination addresses of all packets appear in plain text. This enables numerous attacks, including surveillance, man-in-the-middle (MITM), and denial of service (DoS). The talk explains how these attacks work in the current network. Endpoints often believe that use of Network Address Translation (NAT), and Dynamic Host Configuration Protocol (DHCP) can minimize the loss of privacy.We will explain how the regularity of human behavior can be used to overcome these countermeasures. Once packets leave the local autonomous system (AS), they are routed through the network by the Border Gateway Protocol (BGP). The talk will discuss the unreliability of BGP and current attacks on the routing protocol. This will include an introduction to BGP injects and the PEERING testbed for BGP experimentation. One experiment we have performed uses statistical methods (CUSUM and F-test) to detect BGP injection events. We describe work we performed that applies BGP injects to Internet Protocol (IP) address randomization to replace fixed IP addresses in headers with randomized addresses. We explain the similarities and differences of this approach with virtual private networks (VPNs). Analysis of this work shows that BGP reliance on autonomous system (AS) numbers removes privacy from the concept, even though it would disable the current generation of MITM and DoS attacks. We end by presenting a compromise approach that creates software-defined data exchanges (SDX), which mix traffic randomization with VPN concepts. We contrast this approach with the Tor overlay network and provide some performance data.
2021-08-02
Castilho, Sergio D., Godoy, Eduardo P., Salmen, Fadir.  2020.  Implementing Security and Trust in IoT/M2M using Middleware. 2020 International Conference on Information Networking (ICOIN). :726—731.
Machine to Machine (M2M) a sub area of Internet of Things (IoT) will link billions of devices or things distributed around the world using the Internet. These devices when connected exchange information obtained from the environment such as temperature or humidity from industrial or residential control process. Information Security (IS) and Trust are one of the fundamental points for users and the industry to accept the use of these devices with Confidentiality, Integrity, Availability and Authenticity. The key reason is that most of these devices use wireless media especially in residential and smart city environments. The overall goal of this work is to implement a Middleware Security to improve Safety and Security between the control network devices used in IoT/M2M and the Internet for residential or industrial environments. This implementation has been tested with different protocols as CoAP and MQTT, a microcomputer with free Real-Time Operating System (RTOS) implemented in a Raspberry Pi Gateway Access Point (RGAP), Network Address Translator (NAT), IPTable firewall and encryption is part of this implementation for secure data transmission
2021-07-08
Cesconetto, Jonas, Silva, Luís A., Valderi Leithardt, R. Q., Cáceres, María N., Silva, Luís A., Garcia, Nuno M..  2020.  PRIPRO:Solution for user profile control and management based on data privacy. 2020 15th Iberian Conference on Information Systems and Technologies (CISTI). :1—6.
Intelligent environments work collaboratively, bringing more comfort to human beings. The intelligence of these environments comes from technological advances in sensors and communication. IoT is the model developed that allows a wide and intelligent communication between devices. Hardware reduction of IoT devices results in vulnerabilities. Thus, there are numerous concerns regarding the security of user information, since mobile devices are easily trackable over the Internet. Care must be taken regarding the information in user profiles. Mobile devices are protected by a permission-based mechanism, which limits third-party applications from accessing sensitive device resources. In this context, this work aims to present a proposal for materialization of application for the evolution of user profiles in intelligent environments. Having as parameters the parameters presented in the proposed taxonomy. The proposed solution is the development of two applications, one for Android devices, responsible for allowing or blocking some features of the device. And another in Cloud, responsible for imposing the parameters and privacy criteria, formalizing the profile control module (PRIPRO - PRIvacy PROfiles).
2021-06-30
Lim, Wei Yang Bryan, Xiong, Zehui, Niyato, Dusit, Huang, Jianqiang, Hua, Xian-Sheng, Miao, Chunyan.  2020.  Incentive Mechanism Design for Federated Learning in the Internet of Vehicles. 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). :1—5.
In the Internet of Vehicles (IoV) paradigm, a model owner is able to leverage on the enhanced capabilities of Intelligent Connected Vehicles (ICV) to develop promising Artificial Intelligence (AI) based applications, e.g., for traffic efficiency. However, in some cases, a model owner may have insufficient data samples to build an effective AI model. To this end, we propose a Federated Learning (FL) based privacy preserving approach to facilitate collaborative FL among multiple model owners in the IoV. Our system model enables collaborative model training without compromising data privacy given that only the model parameters instead of the raw data are exchanged within the federation. However, there are two main challenges of incentive mismatches between workers and model owners, as well as among model owners. For the former, we leverage on the self-revealing mechanism in contract theory under information asymmetry. For the latter, we use the coalitional game theory approach that rewards model owners based on their marginal contributions. The numerical results validate the performance efficiency of our proposed hierarchical incentive mechanism design.
Chen, Jichang, Lu, Zhixiang, Zhu, Xueping.  2020.  A Lightweight Dual Authentication Protocol for the Internet of Vehicles. 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE). :17—22.
With the development of 5G communication technology, the status of the Internet of Vehicles in people's lives is greatly improved in the general trend of intelligent transportation. The combination of vehicles and Radio Frequency Identification (RFID) makes the application prospects of vehicle networking gradually expand. However, the wireless network of the Internet of Vehicles is open and mobile, so it can be easily stolen or tampered with by attackers. Moreover, it will cause serious traffic security problems and even threat people's lives. In this paper, we propose a lightweight authentication protocol for the Internet of Vehicles based on a mobile RFID system and give corresponding security requirements for modeling potential attacks. The protocol is based on the three-party mutual authentication, and uses bit-operated left-cycle shift operations and hetero-oriented operations to generate encrypted data. The simultaneous inclusion of triparty shared key information and random numbers makes the protocol resistant to counterfeit attacks, violent attacks, replay attacks and desynchronization attacks. Finally, a simulation analysis of the security protocol using the ProVerif tool shows that the protocol secures is not accessible to attackers during the data transfer, and achieve the three-party authentication between sensor nodes (SN), vehicle nodes (Veh) and backend servers.
2021-06-28
Dahiya, Rohan, Jiang, Frank, Doss, Robin Ram.  2020.  A Feedback-Driven Lightweight Reputation Scheme for IoV. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1060–1068.
Most applications of Internet of Vehicles (IoVs) rely on collaboration between nodes. Therefore, false information flow in-between these nodes poses the challenging trust issue in rapidly moving IoV nodes. To resolve this issue, a number of mechanisms have been proposed in the literature for the detection of false information and establishment of trust in IoVs, most of which employ reputation scores as one of the important factors. However, it is critical to have a robust and consistent scheme that is suitable to aggregate a reputation score for each node based on the accuracy of the shared information. Such a mechanism has therefore been proposed in this paper. The proposed system utilises the results of any false message detection method to generate and share feedback in the network, this feedback is then collected and filtered to remove potentially malicious feedback in order to produce a dynamic reputation score for each node. The reputation system has been experimentally validated and proved to have high accuracy in the detection of malicious nodes sending false information and is robust or negligibly affected in the presence of spurious feedback.
2021-06-24
Hastings, John C., Laverty, David M., Jahic, Admir, Morrow, D John, Brogan, Paul.  2020.  Cyber-security considerations for domestic-level automated demand-response systems utilizing public-key infrastructure and ISO/IEC 20922. 2020 31st Irish Signals and Systems Conference (ISSC). :1–6.
In this paper, the Authors present MQTT (ISO/IEC 20922), coupled with Public-key Infrastructure (PKI) as being highly suited to the secure and timely delivery of the command and control messages required in a low-latency Automated Demand Response (ADR) system which makes use of domestic-level electrical loads connected to the Internet. Several use cases for ADR are introduced, and relevant security considerations are discussed; further emphasizing the suitability of the proposed infrastructure. The authors then describe their testbed platform for testing ADR functionality, and finally discuss the next steps towards getting these kinds of technologies to the next stage.
2021-05-25
Tian, Nianfeng, Guo, Qinglai, Sun, Hongbin, Huang, Jianye.  2020.  A Synchronous Iterative Method of Power Flow in Inter-Connected Power Grids Considering Privacy Preservation: A CPS Perspective. 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2). :782–787.
The increasing development of smart grid facilitates that modern power grids inter-connect with each other and form a large power system, making it possible and advantageous to conduct coordinated power flow among several grids. The communication burden and privacy issue are the prominent challenges in the application of synchronous iteration power flow method. In this paper, a synchronous iterative method of power flow in inter-connected power grid considering privacy preservation is proposed. By establishing the masked model of power flow for each sub-grid, the synchronous iteration is conducted by gathering the masked model of sub-grids in the coordination center and solving the masked correction equation in a concentration manner at each step. Generally, the proposed method can concentrate the major calculation of power flow on the coordination center, reduce the communication burden and guarantee the privacy preservation of sub-grids. A case study on IEEE 118-bus test system demonstrate the feasibility and effectiveness of the proposed methodology.
[Anonymous].  2020.  B-DCT based Watermarking Algorithm for Patient Data Protection in IoMT. 2020 International Conference on Information Security and Cryptology (ISCTURKEY). :1—4.
Internet of Medical Things (IoMT) is the connection between medical devices and information systems to share, collect, process, store, and integrate patient and health data using network technologies. X-Rays, MR, MRI, and CT scans are the most frequently used patient medical image data. These images usually include patient information in one of the corners of the image. In this research work, to protect patient information, a new robust and secure watermarking algorithm developed for a selected region of interest (ROI) of medical images. First ROI selected from the medical image, then selected part divided equal blocks and applied Discrete Cosine Transformation (DCT) algorithm to embed a watermark into the selected coefficients. Several geometric and removal attacks are applied to the watermarked multimedia element such as lossy image compression, the addition of Gaussian noise, denoising, filtering, median filtering, sharpening, contrast enhancement, JPEG compression, and rotation. Experimental results show very promising results in PSNR and similarity ratio (SR) values after blocked DCT (B-DCT) based embedding algorithm against the Discrete Wavelet Transformation (DWT), Least Significant Bits (LSB) and DCT algorithms.
Zhu, Hong, Xia, Bing, Zhou, Dongxu, Zhang, Ming, Ma, Zhoujun.  2020.  Research on Integrated Model and Interactive Influence of Energy Internet Cyber Physical System. 2020 IEEE Sustainable Power and Energy Conference (iSPEC). :1667–1671.

Energy Internet is a typical cyber-physical system (CPS), in which the disturbance on cyber part may result in the operation risks on the physical part. In order to perform CPS assessment and research the interactive influence between cyber part and physical part, an integrated energy internet CPS model which adopts information flow matrix, energy control flow matrix and information energy hybrid flow matrix is proposed in this paper. The proposed model has a higher computational efficacy compared with simulation based approaches. Then, based on the proposed model, the influence of cyber disturbances such as data dislocation, data delay and data error on the physical part are studied. Finally, a 3 MW PET based energy internet CPS is built using PSCAD/EMTDC software. The simulation results prove the validity of the proposed model and the correctness of the interactive influence analysis.

Raj, Rajendra K., Ekstrom, Joseph J., Impagliazzo, John, Lingafelt, Steven, Parrish, Allen, Reif, Harry, Sobiesk, Ed.  2017.  Perspectives on the future of cybersecurity education. 2017 IEEE Frontiers in Education Conference (FIE). :1—2.
As the worldwide demand for cybersecurity-trained professionals continues to grow, the need to understand and define what cybersecurity education really means at the college or university level. Given the relative infancy of these efforts to define undergraduate cybersecurity programs, the panelists will present different perspectives on how such programs can be structured. They will then engage with the audience to explore additional viewpoints on cybersecurity, and work toward a shared understanding of undergraduate cybersecurity programs.
2021-05-20
Dua, Amit, Barpanda, Siddharth Sekhar, Kumar, Neeraj, Tanwar, Sudeep.  2020.  Trustful: A Decentralized Public Key Infrastructure and Identity Management System. 2020 IEEE Globecom Workshops GC Wkshps. :1—6.

Modern Internet TCP uses Secure Sockets Layers (SSL)/Transport Layer Security (TLS) for secure communication, which relies on Public Key Infrastructure (PKIs) to authenticate public keys. Conventional PKI is done by Certification Authorities (CAs), issuing and storing Digital Certificates, which are public keys of users with the users identity. This leads to centralization of authority with the CAs and the storage of CAs being vulnerable and imposes a security concern. There have been instances in the past where CAs have issued rogue certificates or the CAs have been hacked to issue malicious certificates. Motivated from these facts, in this paper, we propose a method (named as Trustful), which aims to build a decentralized PKI using blockchain. Blockchains provide immutable storage in a decentralized manner and allows us to write smart contracts. Ethereum blockchain can be used to build a web of trust model where users can publish attributes, validate attributes about other users by signing them and creating a trust store of users that they trust. Trustful works on the Web-of-Trust (WoT) model and allows for any entity on the network to verify attributes about any other entity through a trusted network. This provides an alternative to the conventional CA-based identity verification model. The proposed model has been implemented and tested for efficacy and known major security attacks.

Heydari, Vahid.  2020.  A New Security Framework for Remote Patient Monitoring Devices. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1—4.

Digital connectivity is fundamental to the health care system to deliver safe and effective care. However, insecure connectivity could be a major threat to patient safety and privacy (e.g., in August 2017, FDA recalled 465,000 pacemakers because of discovering security flaws). Although connecting a patient's pacemaker to the Internet has many advantages for monitoring the patient, this connectivity opens a new door for cyber-attackers to steal the patient data or even control the pacemaker or damage it. Therefore, patients are forced to choose between connectivity and security. This paper presents a framework for secure and private communications between wearable medical devices and patient monitoring systems. The primary objective of this research is twofold, first to identify and analyze the communication vulnerabilities, second, to develop a framework for combating unauthorized access to data through the compromising of computer security. Specifically, hiding targets from cyber-attackers could prevent our system from future cyber-attacks. This is the most effective way to stop cyber-attacks in their first step.

2021-05-13
Niu, Yingjiao, Lei, Lingguang, Wang, Yuewu, Chang, Jiang, Jia, Shijie, Kou, Chunjing.  2020.  SASAK: Shrinking the Attack Surface for Android Kernel with Stricter “seccomp” Restrictions. 2020 16th International Conference on Mobility, Sensing and Networking (MSN). :387–394.
The increasing vulnerabilities in Android kernel make it an attractive target to the attackers. Most kernel-targeted attacks are initiated through system calls. For security purpose, Google has introduced a Linux kernel security mechanism named “seccomp” since Android O to constrain the system calls accessible to the Android apps. Unfortunately, existing Android seccomp mechanism provides a fairly coarse-grained restriction by enforcing a unified seccomp policy containing more than 250 system calls for Android apps, which greatly reduces the effectiveness of seccomp. Also, it lacks an approach to profile the unnecessary system calls for a given Android app. In this paper we present a two-level control scheme named SASAK, which can shrink the attack surface of Android kernel by strictly constraining the system calls available to the Android apps with seccomp mechanism. First, instead of leveraging a unified seccomp policy for all Android apps, SASAK introduces an architecture- dedicated system call constraining by enforcing two separate and refined seccomp policies for the 32-bit Android apps and 64-bit Android apps, respectively. Second, we provide a tool to profile the necessary system calls for a given Android app and enforce an app-dedicated seccomp policy to further reduce the allowed system calls for the apps selected by the users. The app-dedicated control could dynamically change the seccomp policy for an app according to its actual needs. We implement a prototype of SASAK and the experiment results show that the architecture-dedicated constraining reduces 39.6% system calls for the 64-bit apps and 42.5% system calls for the 32-bit apps. 33% of the removed system calls for the 64-bit apps are vulnerable, and the number for the 32-bit apps is 18.8%. The app-dedicated restriction reduces about 66.9% and 62.5% system calls on average for the 64-bit apps and 32-bit apps, respectively. In addition, SASAK introduces negligible performance overhead.
Li, Yizhi.  2020.  Research on Application of Convolutional Neural Network in Intrusion Detection. 2020 7th International Forum on Electrical Engineering and Automation (IFEEA). :720–723.
At present, our life is almost inseparable from the network, the network provides a lot of convenience for our life. However, a variety of network security incidents occur very frequently. In recent years, with the continuous development of neural network technology, more and more researchers have applied neural network to intrusion detection, which has developed into a new research direction in intrusion detection. As long as the neural network is provided with input data including network data packets, through the process of self-learning, the neural network can separate abnormal data features and effectively detect abnormal data. Therefore, the article innovatively proposes an intrusion detection method based on deep convolutional neural networks (CNN), which is used to test on public data sets. The results show that the model has a higher accuracy rate and a lower false negative rate than traditional intrusion detection methods.