Visible to the public Biblio

Found 415 results

Filters: Keyword is Internet  [Clear All Filters]
2020-01-13
Frey, Michael, Gündoğan, Cenk, Kietzmann, Peter, Lenders, Martine, Petersen, Hauke, Schmidt, Thomas C., Juraschek, Felix, Wählisch, Matthias.  2019.  Security for the Industrial IoT: The Case for Information-Centric Networking. 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). :424–429.
Industrial production plants traditionally include sensors for monitoring or documenting processes, and actuators for enabling corrective actions in cases of misconfigurations, failures, or dangerous events. With the advent of the IoT, embedded controllers link these `things' to local networks that often are of low power wireless kind, and are interconnected via gateways to some cloud from the global Internet. Inter-networked sensors and actuators in the industrial IoT form a critical subsystem while frequently operating under harsh conditions. It is currently under debate how to approach inter-networking of critical industrial components in a safe and secure manner.In this paper, we analyze the potentials of ICN for providing a secure and robust networking solution for constrained controllers in industrial safety systems. We showcase hazardous gas sensing in widespread industrial environments, such as refineries, and compare with IP-based approaches such as CoAP and MQTT. Our findings indicate that the content-centric security model, as well as enhanced DoS resistance are important arguments for deploying Information Centric Networking in a safety-critical industrial IoT. Evaluation of the crypto efforts on the RIOT operating system for content security reveal its feasibility for common deployment scenarios.
Farzaneh, Behnam, Montazeri, Mohammad Ali, Jamali, Shahram.  2019.  An Anomaly-Based IDS for Detecting Attacks in RPL-Based Internet of Things. 2019 5th International Conference on Web Research (ICWR). :61–66.
The Internet of Things (IoT) is a concept that allows the networking of various objects of everyday life and communications on the Internet without human interaction. The IoT consists of Low-Power and Lossy Networks (LLN) which for routing use a special protocol called Routing over Low-Power and Lossy Networks (RPL). Due to the resource-constrained nature of RPL networks, they may be exposed to a variety of internal attacks. Neighbor attack and DIS attack are the specific internal attacks at this protocol. This paper presents an anomaly-based lightweight Intrusion Detection System (IDS) based on threshold values for detecting attacks on the RPL protocol. The results of the simulation using Cooja show that the proposed model has a very high True Positive Rate (TPR) and in some cases, it can be 100%, while the False Positive Rate (FPR) is very low. The results show that the proposed model is fully effective in detecting attacks and applicable to large-scale networks.
Djama, Adel, Djamaa, Badis, Senouci, Mustapha Reda.  2019.  TCP/IP and ICN Networking Technologies for the Internet of Things: A Comparative Study. 2019 International Conference on Networking and Advanced Systems (ICNAS). :1–6.
Interconnecting resource-constrained devices in the Internet of Things (IoT) is generally achieved via IP-based technologies such as 6LoWPAN, which rely on the adaptation of the TCP/IP stack to fit IoT requirements. Very recent researches suggest that the Information-Centric Networking (ICN) paradigm, which switches the way to do networking, by fetching data by names regardless of their location, would provide native support for the functionalities required by IoT applications. Indeed, ICN intrinsic features, such as caching, naming, packet level security and stateful forwarding, favor it as a promising approach in the IoT. This paper gives a qualitative comparative study between the two communication paradigms (TCP/IP and ICN), and discusses their support for IoT environments, with a focus on the required key features such as mobility, scalability, and security.
Guanyu, Chen, Yunjie, Han, Chang, Li, Changrui, Lin, Degui, Fang, Xiaohui, Rong.  2019.  Data Acquisition Network and Application System Based on 6LoWPAN and IPv6 Transition Technology. 2019 IEEE 2nd International Conference on Electronics Technology (ICET). :78–83.
In recent years, IPv6 will gradually replace IPv4 with IPv4 address exhaustion and the rapid development of the Low-Power Wide-Area network (LPWAN) wireless communication technology. This paper proposes a data acquisition and application system based on 6LoWPAN and IPv6 transition technology. The system uses 6LoWPAN and 6to4 tunnel to realize integration of the internal sensor network and Internet to improve the adaptability of the gateway and reduce the average forwarding delay and packet loss rate of small data packet. Moreover, we design and implement the functions of device access management, multiservice data storage and affair data service by combining the C/S architecture with the actual uploaded river quality data. The system has the advantages of flexible networking, low power consumption, rich IPv6 address, high communication security, and strong reusability.
2020-01-07
Zebari, Dilovan Asaad, Haron, Habibollah, Zeebaree, Subhi R. M., Qader Zeebaree, Diyar.  2018.  Multi-Level of DNA Encryption Technique Based on DNA Arithmetic and Biological Operations. 2018 International Conference on Advanced Science and Engineering (ICOASE). :312-317.

Networks have evolved very rapidly, which allow secret data transformation speedily through the Internet. However, the security of secret data has posed a serious threat due to openness of these networks. Thus, researchers draw their attention on cryptography field for this reason. Due to the traditional cryptographic techniques which are vulnerable to intruders nowadays. Deoxyribonucleic Acid (DNA) considered as a promising technology for cryptography field due to extraordinary data density and vast parallelism. With the help of the various DNA arithmetic and biological operations are also Blum Blum Shub (BBS) generator, a multi-level of DNA encryption algorithm is proposed here. The algorithm first uses the dynamic key generation to encrypt sensitive information as a first level; second, it uses BBS generator to generate a random DNA sequence; third, the BBS-DNA sequence spliced with a DNA Gen Bank reference to produce a new DNA reference. Then, substitution, permutation, and dynamic key are used to scramble the new DNA reference nucleotides locations. Finally, for further enhanced security, an injective mapping is established to combine encrypted information with encrypted DNA reference using Knight tour movement in Hadamard matrix. The National Institute of Standard and Technology (NIST) tests have been used to test the proposed algorithm. The results of the tests demonstrate that they effectively passed all the randomness tests of NIST which means they can effectively resist attack operations.

2019-12-30
Kubo, Ryogo.  2018.  Detection and Mitigation of False Data Injection Attacks for Secure Interactive Networked Control Systems. 2018 IEEE International Conference on Intelligence and Safety for Robotics (ISR). :7-12.

Cybersecurity in control systems has been actively discussed in recent years. In particular, networked control systems (NCSs) over the Internet are exposed to various types of cyberattacks such as false data injection attacks. This paper proposes a detection and mitigation method of the false data injection attacks in interactive NCSs, i.e., bilateral teleoperation systems. A bilateral teleoperation system exchanges position and force information through the Internet between the master and slave robots. The proposed method utilizes two redundant communication channels for both the master-to-slave and slave-to-master paths. The attacks are detected by a tamper detection observer (TDO) on each of the master and slave sides. The TDO compares the position responses of actual robots and robot models. A path selector on each side chooses the appropriate position and force responses from the responses received through the two communication channels, based on the outputs of the TDO. The proposed method is validated by simulations with attack models.

2019-12-18
Kirti, Agrawal, Namrata, Kumar, Sunil, Sah, D.K..  2018.  Prevention of DDoS Attack through Harmonic Homogeneity Difference Mechanism on Traffic Flow. 2018 4th International Conference on Recent Advances in Information Technology (RAIT). :1-6.

The ever rising attacks on IT infrastructure, especially on networks has become the cause of anxiety for the IT professionals and the people venturing in the cyber-world. There are numerous instances wherein the vulnerabilities in the network has been exploited by the attackers leading to huge financial loss. Distributed denial of service (DDoS) is one of the most indirect security attack on computer networks. Many active computer bots or zombies start flooding the servers with requests, but due to its distributed nature throughout the Internet, it cannot simply be terminated at server side. Once the DDoS attack initiates, it causes huge overhead to the servers in terms of its processing capability and service delivery. Though, the study and analysis of request packets may help in distinguishing the legitimate users from among the malicious attackers but such detection becomes non-viable due to continuous flooding of packets on servers and eventually leads to denial of service to the authorized users. In the present research, we propose traffic flow and flow count variable based prevention mechanism with the difference in homogeneity. Its simplicity and practical approach facilitates the detection of DDoS attack at the early stage which helps in prevention of the attack and the subsequent damage. Further, simulation result based on different instances of time has been shown on T-value including generation of simple and harmonic homogeneity for observing the real time request difference and gaps.

Guleria, Akshit, Kalra, Evneet, Gupta, Kunal.  2019.  Detection and Prevention of DoS Attacks on Network Systems. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon). :544-548.

Distributed Denial of Service (DDoS) strike is a malevolent undertaking to irritate regular action of a concentrated on server, organization or framework by overwhelming the goal or its incorporating establishment with a flood of Internet development. DDoS ambushes achieve feasibility by utilizing different exchanged off PC structures as wellsprings of strike action. Mishandled machines can join PCs and other masterminded resources, for instance, IoT contraptions. From an anomalous express, a DDoS attack looks like a vehicle convergence ceasing up with the road, shielding standard action from meeting up at its pined for objective.

Chugunkov, Ilya V., Fedorov, Leonid O., Achmiz, Bela Sh., Sayfullina, Zarina R..  2018.  Development of the Algorithm for Protection against DDoS-Attacks of Type Pulse Wave. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :292-294.

Protection from DDoS-attacks is one of the most urgent problems in the world of network technologies. And while protect systems has algorithms for detection and preventing DDoS attacks, there are still some unresolved problems. This article is devoted to the DDoS-attack called Pulse Wave. Providing a brief introduction to the world of network technologies and DDoS-attacks, in particular, aims at the algorithm for protecting against DDoS-attack Pulse Wave. The main goal of this article is the implementation of traffic classifier that adds rules for infected computers to put them into a separate queue with limited bandwidth. This approach reduces their load on the service and, thus, firewall neutralises the attack.

M, Suchitra, S M, Renuka, Sreerekha, Lingaraj K..  2018.  DDoS Prevention Using D-PID. 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS). :453-457.

In recent years, the attacks on systems have increased and among such attack is Distributed Denial of Service (DDoS) attack. The path identifiers (PIDs) used for inter-domain routing are static, which makes it easier the attack easier. To address this vulnerability, this paper addresses the usage of Dynamic Path Identifiers (D-PIDs) for routing. The PID of inter-domain path connector is kept oblivious and changes dynamically, thus making it difficult to attack the system. The prototype designed with major components like client, server and router analyses the outcome of D-PID usage instead of PIDs. The results show that, DDoS attacks can be effectively prevented if Dynamic Path Identifiers (D-PIDs) are used instead of Static Path Identifiers (PIDs).

Saharan, Shail, Gupta, Vishal.  2019.  Prevention and Mitigation of DNS Based DDoS Attacks in SDN Environment. 2019 11th International Conference on Communication Systems Networks (COMSNETS). :571-573.

Denial-of-Service attack (DoS attack) is an attack on network in which an attacker tries to disrupt the availability of network resources by overwhelming the target network with attack packets. In DoS attack it is typically done using a single source, and in a Distributed Denial-of-Service attack (DDoS attack), like the name suggests, multiple sources are used to flood the incoming traffic of victim. Typically, such attacks use vulnerabilities of Domain Name System (DNS) protocol and IP spoofing to disrupt the normal functioning of service provider or Internet user. The attacks involving DNS, or attacks exploiting vulnerabilities of DNS are known as DNS based DDOS attacks. Many of the proposed DNS based DDoS solutions try to prevent/mitigate such attacks using some intelligent non-``network layer'' (typically application layer) protocols. Utilizing the flexibility and programmability aspects of Software Defined Networks (SDN), via this proposed doctoral research it is intended to make underlying network intelligent enough so as to prevent DNS based DDoS attacks.

Misono, Masanori, Yoshida, Kaito, Hwang, Juho, Shinagawa, Takahiro.  2018.  Distributed Denial of Service Attack Prevention at Source Machines. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :488-495.

Distributed denial of service (DDoS) attacks is a serious cyberattack that exhausts target machine's processing capacity by sending a huge number of packets from hijacked machines. To minimize resource consumption caused by DDoS attacks, filtering attack packets at source machines is the best approach. Although many studies have explored the detection of DDoS attacks, few studies have proposed DDoS attack prevention schemes that work at source machines. We propose a reliable, lightweight, transparent, and flexible DDoS attack prevention scheme that works at source machines. In this scheme, we employ a hypervisor with a packet filtering mechanism on each managed machine to allow the administrator to easily and reliably suppress packet transmissions. To make the proposed scheme lightweight and transparent, we exploit a thin hypervisor that allows pass-through access to hardware (except for network devices) from the operating system, thereby reducing virtualization overhead and avoiding compromising user experience. To make the proposed scheme flexible, we exploit a configurable packet filtering mechanism with a guaranteed safe code execution mechanism that allows the administrator to provide a filtering policy as executable code. In this study, we implemented the proposed scheme using BitVisor and the Berkeley Packet Filter. Experimental results show that the proposed scheme can suppress arbitrary packet transmissions with negligible latency and throughput overhead compared to a bare metal system without filtering mechanisms.

Dao, Nhu-Ngoc, Vu, Duc-Nghia, Lee, Yunseong, Park, Minho, Cho, Sungrae.  2018.  MAEC-X: DDoS Prevention Leveraging Multi-Access Edge Computing. 2018 International Conference on Information Networking (ICOIN). :245-248.

The convergence of access networks in the fifth-generation (5G) evolution promises multi-tier networking infrastructures for the successes of various applications realizing the Internet-of-Everything era. However, in this context, the support of a massive number of connected devices also opens great opportunities for attackers to exploit these devices in illegal actions against their victims, especially within the distributed denial-of-services (DDoS) attacks. Nowadays, DDoS prevention still remains an open issue in term of performance improvement although there is a significant number of existing solutions have been proposed in the literature. In this paper, we investigate the advances of multi-access edge computing (MAEC), which is considered as one of the most important emerging technologies in 5G networks, in order to provide an effective DDoS prevention solution (referred to be MAEC-X). The proposed MAEC-X architecture and mechanism are developed as well as proved its effectiveness against DDoS attacks through intensive security analysis.

Dogrul, Murat, Aslan, Adil, Celik, Eyyup.  2011.  Developing an international cooperation on cyber defense and deterrence against Cyber terrorism. 2011 3rd International Conference on Cyber Conflict. :1–15.
Information Technology (IT) security is a growing concern for governments around the world. Cyber terrorism poses a direct threat to the security of the nations' critical infrastructures and ITs as a low-cost asymmetric warfare element. Most of these nations are aware of the vulnerability of the information technologies and the significance of protecting critical infrastructures. To counteract the threat of potentially disastrous cyber attacks, nations' policy makers are increasingly pondering on the use of deterrence strategies to supplement cyber defense. Nations create their own national policies and strategies which cover cyber security countermeasures including cyber defense and deterrence against cyber threats. But it is rather hard to cope with the threat by means of merely `national' cyber defense policies and strategies, since the cyberspace spans worldwide and attack's origin can even be overseas. The term “cyber terrorism” is another source of controversy. An agreement on a common definition of cyber terrorism among the nations is needed. However, the international community has not been able to succeed in developing a commonly accepted comprehensive definition of “terrorism” itself. This paper evaluates the importance of building international cooperation on cyber defense and deterrence against cyber terrorism. It aims to improve and further existing contents and definitions of cyber terrorism; discusses the attractiveness of cyber attacks for terrorists and past experiences on cyber terrorism. It emphasizes establishing international legal measures and cooperation between nations against cyber terrorism in order to maintain the international stability and prosperity. In accordance with NATO's new strategic concept, it focuses on developing the member nations' ability to prevent, detect, defend against and recover from cyber attacks to enhance and coordinate national cyber defense capabilities. It provides necessary steps that have to be taken globally in order to counter cyber terrorism.
Shepherd, Morgan M., Klein, Gary.  2012.  Using Deterrence to Mitigate Employee Internet Abuse. 2012 45th Hawaii International Conference on System Sciences. :5261–5266.
This study looks at the question of how to reduce/eliminate employee Internet Abuse. Companies have used acceptable use policies (AUP) and technology in an attempt to mitigate employees' personal use of company resources. Research shows that AUPs do not do a good job at this but that technology does. Research also shows that while technology can be used to greatly restrict personal use of the internet in the workplace, employee satisfaction with the workplace suffers when this is done. In this research experiment we used technology not to restrict employee use of company resources for personal use, but to make the employees more aware of the current Acceptable Use Policy, and measured the decrease in employee internet abuse. The results show that this method can result in a drop from 27 to 21 percent personal use of the company networks.
Mohammed, Saif Saad, Hussain, Rasheed, Senko, Oleg, Bimaganbetov, Bagdat, Lee, JooYoung, Hussain, Fatima, Kerrache, Chaker Abdelaziz, Barka, Ezedin, Alam Bhuiyan, Md Zakirul.  2018.  A New Machine Learning-based Collaborative DDoS Mitigation Mechanism in Software-Defined Network. 2018 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :1–8.
Software Defined Network (SDN) is a revolutionary idea to realize software-driven network with the separation of control and data planes. In essence, SDN addresses the problems faced by the traditional network architecture; however, it may as well expose the network to new attacks. Among other attacks, distributed denial of service (DDoS) attacks are hard to contain in such software-based networks. Existing DDoS mitigation techniques either lack in performance or jeopardize the accuracy of the attack detection. To fill the voids, we propose in this paper a machine learning-based DDoS mitigation technique for SDN. First, we create a model for DDoS detection in SDN using NSL-KDD dataset and then after training the model on this dataset, we use real DDoS attacks to assess our proposed model. Obtained results show that the proposed technique equates favorably to the current techniques with increased performance and accuracy.
Kim, Kyoungmin, You, Youngin, Park, Mookyu, Lee, Kyungho.  2018.  DDoS Mitigation: Decentralized CDN Using Private Blockchain. 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN). :693–696.
Distributed Denial of Service (DDoS) attacks are intense and are targeted to major infrastructure, governments and military organizations in each country. There are a lot of mitigations about DDoS, and the concept of Content Delivery Network (CDN) has been able to avoid attacks on websites. However, since the existing CDN system is fundamentally centralized, it may be difficult to prevent DDoS. This paper describes the distributed CDN Schema using Private Blockchain which solves the problem of participation of existing transparent and unreliable nodes. This will explain DDoS mitigation that can be used by military and government agencies.
2019-12-16
Hou, Xin-Yu, Zhao, Xiao-Lin, Wu, Mei-Jing, Ma, Rui, Chen, Yu-Peng.  2018.  A Dynamic Detection Technique for XSS Vulnerabilities. 2018 4th Annual International Conference on Network and Information Systems for Computers (ICNISC). :34–43.

This paper studies the principle of vulnerability generation and mechanism of cross-site scripting attack, designs a dynamic cross-site scripting vulnerabilities detection technique based on existing theories of black box vulnerabilities detection. The dynamic detection process contains five steps: crawler, feature construct, attacks simulation, results detection and report generation. Crawling strategy in crawler module and constructing algorithm in feature construct module are key points of this detection process. Finally, according to the detection technique proposed in this paper, a detection tool is accomplished in Linux using python language to detect web applications. Experiments were launched to verify the results and compare with the test results of other existing tools, analyze the usability, advantages and disadvantages of the detection method above, confirm the feasibility of applying dynamic detection technique to cross-site scripting vulnerabilities detection.

Marashdih, Abdalla Wasef, Zaaba, Zarul Fitri, Suwais, Khaled.  2018.  Cross Site Scripting: Investigations in PHP Web Application. 2018 International Conference on Promising Electronic Technologies (ICPET). :25–30.

Web applications are now considered one of the common platforms to represent data and conducting service releases throughout the World Wide Web. A number of the most commonly utilised frameworks for web applications are written in PHP. They became main targets because a vast number of servers are running these applications throughout the world. This increase in web application utilisation has made it more attractive to both users and hackers. According to the latest web security reports and research, cross site scripting (XSS) is the most popular vulnerability in PHP web application. XSS is considered an injection type of attack, which results in the theft of sensitive data, cookies, and sessions. Several tools and approaches have focused on detecting this kind of vulnerability in PHP source code. However, it is still a current problem in PHP web applications. This paper describes the popularity of PHP technology among other technologies, and highlight the approaches used to detect the most common vulnerabilities on PHP web applications, which is XSS. In addition, the discussion and the conclusion with future direction of research within this domain are highlighted.

Chen, Ping, Yu, Han, Zhao, Min, Wang, Jinshuang.  2018.  Research and Implementation of Cross-site Scripting Defense Method Based on Moving Target Defense Technology. 2018 5th International Conference on Systems and Informatics (ICSAI). :818–822.

The root cause of cross-site scripting(XSS) attack is that the JavaScript engine can't distinguish between the JavaScript code in Web application and the JavaScript code injected by attackers. Moving Target Defense (MTD) is a novel technique that aim to defeat attacks by frequently changing the system configuration so that attackers can't catch the status of the system. This paper describes the design and implement of a XSS defense method based on Moving Target Defense technology. This method adds a random attribute to each unsafe element in Web application to distinguish between the JavaScript code in Web application and the JavaScript code injected by attackers and uses a security check function to verify the random attribute, if there is no random attribute or the random attribute value is not correct in a HTML (Hypertext Markup Language) element, the execution of JavaScript code will be prevented. The experiment results show that the method can effectively prevent XSS attacks and have little impact on the system performance.

Bukhari, Syed Nisar, Ahmad Dar, Muneer, Iqbal, Ummer.  2018.  Reducing attack surface corresponding to Type 1 cross-site scripting attacks using secure development life cycle practices. 2018 Fourth International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB). :1–4.

While because the range of web users have increased exponentially, thus has the quantity of attacks that decide to use it for malicious functions. The vulnerability that has become usually exploited is thought as cross-site scripting (XSS). Cross-site Scripting (XSS) refers to client-side code injection attack whereby a malicious user will execute malicious scripts (also usually stated as a malicious payload) into a legitimate web site or web based application. XSS is amongst the foremost rampant of web based application vulnerabilities and happens once an internet based application makes use of un-validated or un-encoded user input at intervals the output it generates. In such instances, the victim is unaware that their data is being transferred from a website that he/she trusts to a different site controlled by the malicious user. In this paper we shall focus on type 1 or "non-persistent cross-site scripting". With non-persistent cross-site scripting, malicious code or script is embedded in a Web request, and then partially or entirely echoed (or "reflected") by the Web server without encoding or validation in the Web response. The malicious code or script is then executed in the client's Web browser which could lead to several negative outcomes, such as the theft of session data and accessing sensitive data within cookies. In order for this type of cross-site scripting to be successful, a malicious user must coerce a user into clicking a link that triggers the non-persistent cross-site scripting attack. This is usually done through an email that encourages the user to click on a provided malicious link, or to visit a web site that is fraught with malicious links. In this paper it will be discussed and elaborated as to how attack surfaces related to type 1 or "non-persistent cross-site scripting" attack shall be reduced using secure development life cycle practices and techniques.

Zhu, Yan, Yang, Shuai, Chu, William Cheng-Chung, Feng, Rongquan.  2019.  FlashGhost: Data Sanitization with Privacy Protection Based on Frequent Colliding Hash Table. 2019 IEEE International Conference on Services Computing (SCC). :90–99.
Today's extensive use of Internet creates huge volumes of data by users in both client and server sides. Normally users don't want to store all the data in local as well as keep archive in the server. For some unwanted data, such as trash, cache and private data, needs to be deleted periodically. Explicit deletion could be applied to the local data, while it is a troublesome job. But there is no transparency to users on the personal data stored in the server. Since we have no knowledge of whether they're cached, copied and archived by the third parties, or sold by the service provider. Our research seeks to provide an automatic data sanitization system to make data could be self-destructing. Specifically, we give data a life cycle, which would be erased automatically when at the end of its life, and the destroyed data cannot be recovered by any effort. In this paper, we present FlashGhost, which is a system that meets this challenge through a novel integration of cryptography techniques with the frequent colliding hash table. In this system, data will be unreadable and rendered unrecoverable by overwriting multiple times after its validity period has expired. Besides, the system reliability is enhanced by threshold cryptography. We also present a mathematical model and verify it by a number of experiments, which demonstrate theoretically and experimentally our system is practical to use and meet the data auto-sanitization goal described above.
2019-12-05
Campioni, Lorenzo, Hauge, Mariann, Landmark, Lars, Suri, Niranjan, Tortonesi, Mauro.  2019.  Considerations on the Adoption of Named Data Networking (NDN) in Tactical Environments. 2019 International Conference on Military Communications and Information Systems (ICMCIS). :1-8.

Mobile military networks are uniquely challenging to build and maintain, because of their wireless nature and the unfriendliness of the environment, resulting in unreliable and capacity limited performance. Currently, most tactical networks implement TCP/IP, which was designed for fairly stable, infrastructure-based environments, and requires sophisticated and often application-specific extensions to address the challenges of the communication scenario. Information Centric Networking (ICN) is a clean slate networking approach that does not depend on stable connections to retrieve information and naturally provides support for node mobility and delay/disruption tolerant communications - as a result it is particularly interesting for tactical applications. However, despite ICN seems to offer some structural benefits for tactical environments over TCP/IP, a number of challenges including naming, security, performance tuning, etc., still need to be addressed for practical adoption. This document, prepared within NATO IST-161 RTG, evaluates the effectiveness of Named Data Networking (NDN), the de facto standard implementation of ICN, in the context of tactical edge networks and its potential for adoption.

2019-11-26
Patil, Srushti, Dhage, Sudhir.  2019.  A Methodical Overview on Phishing Detection along with an Organized Way to Construct an Anti-Phishing Framework. 2019 5th International Conference on Advanced Computing Communication Systems (ICACCS). :588-593.

Phishing is a security attack to acquire personal information like passwords, credit card details or other account details of a user by means of websites or emails. Phishing websites look similar to the legitimate ones which make it difficult for a layman to differentiate between them. As per the reports of Anti Phishing Working Group (APWG) published in December 2018, phishing against banking services and payment processor was high. Almost all the phishy URLs use HTTPS and use redirects to avoid getting detected. This paper presents a focused literature survey of methods available to detect phishing websites. A comparative study of the in-use anti-phishing tools was accomplished and their limitations were acknowledged. We analyzed the URL-based features used in the past to improve their definitions as per the current scenario which is our major contribution. Also, a step wise procedure of designing an anti-phishing model is discussed to construct an efficient framework which adds to our contribution. Observations made out of this study are stated along with recommendations on existing systems.

Acharjamayum, Irani, Patgiri, Ripon, Devi, Dhruwajita.  2018.  Blockchain: A Tale of Peer to Peer Security. 2018 IEEE Symposium Series on Computational Intelligence (SSCI). :609-617.

The underlying or core technology of Bitcoin cryptocurrency has become a blessing for human being in this era. Everything is gradually changing to digitization in this today's epoch. Bitcoin creates virtual money using Blockchain that's become popular over the world. Blockchain is a shared public ledger, and it includes all transactions which are confirmed. It is almost impossible to crack the hidden information in the blocks of the Blockchain. However, there are certain security and technical challenges like scalability, privacy leakage, selfish mining, etc. which hampers the wide application of Blockchain. In this paper, we briefly discuss this emerging technology namely Blockchain. In addition, we extrapolate in-depth insight on Blockchain technology.