Visible to the public Biblio

Found 741 results

Filters: Keyword is cloud computing  [Clear All Filters]
Li, Y., Yang, Y., Yu, X., Yang, T., Dong, L., Wang, W..  2020.  IoT-APIScanner: Detecting API Unauthorized Access Vulnerabilities of IoT Platform. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1—5.

The Internet of Things enables interaction between IoT devices and users through the cloud. The cloud provides services such as account monitoring, device management, and device control. As the center of the IoT platform, the cloud provides services to IoT devices and IoT applications through APIs. Therefore, the permission verification of the API is essential. However, we found that some APIs are unverified, which allows unauthorized users to access cloud resources or control devices; it could threaten the security of devices and cloud. To check for unauthorized access to the API, we developed IoT-APIScanner, a framework to check the permission verification of the cloud API. Through observation, we found there is a large amount of interactive information between IoT application and cloud, which include the APIs and related parameters, so we can extract them by analyzing the code of the IoT application, and use this for mutating API test cases. Through these test cases, we can effectively check the permissions of the API. In our research, we extracted a total of 5 platform APIs. Among them, the proportion of APIs without permission verification reached 13.3%. Our research shows that attackers could use the API without permission verification to obtain user privacy or control of devices.

Chaudhary, H., Sharma, A. K..  2020.  Hybrid Technique of Genetic Algorithm and Extended Diffie-Hellman Algorithm used for Intrusion Detection in Cloud. 2020 International Conference on Electrical and Electronics Engineering (ICE3). :513—516.

It is a well-known fact that the use of Cloud Computing is becoming very common all over the world for data storage and analysis. But the proliferation of the threats in cloud is also their; threats like Information breaches, Data thrashing, Cloud account or Service traffic hijacking, Insecure APIs, Denial of Service, Malicious Insiders, Abuse of Cloud services, Insufficient due Diligence and Shared Technology Vulnerable. This paper tries to come up with the solution for the threat (Denial of Service) in cloud. We attempt to give our newly proposed model by the hybridization of Genetic algorithm and extension of Diffie Hellman algorithm and tries to make cloud transmission secure from upcoming intruders.

Suzic, B., Latinovic, M..  2020.  Rethinking Authorization Management of Web-APIs. 2020 IEEE International Conference on Pervasive Computing and Communications (PerCom). :1—10.

Service providers typically utilize Web APIs to enable the sharing of tenant data and resources with numerous third party web, cloud, and mobile applications. Security mechanisms such as OAuth 2.0 and API keys are commonly applied to manage authorization aspects of such integrations. However, these mechanisms impose functional and security drawbacks both for service providers and their users due to their static design, coarse and context insensitive capabilities, and weak interoperability. Implementing secure, feature-rich, and flexible data sharing services still poses a challenge that many providers face in the process of opening their interfaces to the public.To address these issues, we design the framework that allows pluggable and transparent externalization of authorization functionality for service providers and flexibility in defining and managing security aspects of resource sharing with third parties for their users. Our solution applies a holistic perspective that considers service descriptions, data fragments, security policies, as well as system interactions and states as an integrated space dynamically exposed and collaboratively accessed by agents residing across organizational boundaries.In this work we present design aspects of our contribution and illustrate its practical implementation by analyzing case scenario involving resource sharing of a popular service.

Atlidakis, V., Godefroid, P., Polishchuk, M..  2020.  Checking Security Properties of Cloud Service REST APIs. 2020 IEEE 13th International Conference on Software Testing, Validation and Verification (ICST). :387—397.

Most modern cloud and web services are programmatically accessed through REST APIs. This paper discusses how an attacker might compromise a service by exploiting vulnerabilities in its REST API. We introduce four security rules that capture desirable properties of REST APIs and services. We then show how a stateful REST API fuzzer can be extended with active property checkers that automatically test and detect violations of these rules. We discuss how to implement such checkers in a modular and efficient way. Using these checkers, we found new bugs in several deployed production Azure and Office365 cloud services, and we discuss their security implications. All these bugs have been fixed.

Sun, J., Ma, J., Quan, J., Zhu, X., I, C..  2019.  A Fuzzy String Matching Scheme Resistant to Statistical Attack. 2019 International Conference on Networking and Network Applications (NaNA). :396–402.
The fuzzy query scheme based on vector index uses Bloom filter to construct vector index for key words. Then the statistical attack based on the deviation of frequency distribution of the vector index brings out the sensitive information disclosure. Using the noise vector, a fuzzy query scheme resistant to the statistical attack serving for encrypted database, i.e. S-BF, is introduced. With the noise vector to clear up the deviation of frequency distribution of vector index, the statistical attacks to the vector index are resolved. Demonstrated by lab experiment, S-BF scheme can achieve the secure fuzzy query with the powerful privation protection capability for encrypted cloud database without the loss of fuzzy query efficiency.
Yadav, M. K., Gugal, D., Matkar, S., Waghmare, S..  2019.  Encrypted Keyword Search in Cloud Computing using Fuzzy Logic. 2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT). :1–4.
Research and Development, and information management professionals routinely employ simple keyword searches or more complex Boolean queries when using databases such as PubMed and Ovid and search engines like Google to find the information they need. While satisfying the basic needs of the researcher, basic search is limited which can adversely affect both precision and recall, decreasing productivity and damaging the researchers' ability to discover new insights. The cloud service providers who store user's data may access sensitive information without any proper authority. A basic approach to save the data confidentiality is to encrypt the data. Data encryption also demands the protection of keyword privacy since those usually contain very vital information related to the files. Encryption of keywords protects keyword safety. Fuzzy keyword search enhances system usability by matching the files perfectly or to the nearest possible files against the keywords entered by the user based on similar semantics. Encrypted keyword search in cloud using this logic provides the user, on entering keywords, to receive best possible files in a more secured manner, by protecting the user's documents.
Singh, G., Garg, S..  2020.  Fuzzy Elliptic Curve Cryptography based Cipher Text Policy Attribute based Encryption for Cloud Security. 2020 International Conference on Intelligent Engineering and Management (ICIEM). :327–330.
Cipher Text Policy Attribute Based Encryption which is a form of Public Key Encryption has become a renowned approach as a Data access control scheme for data security and confidentiality. It not only provides the flexibility and scalability in the access control mechanisms but also enhances security by fuzzy fined-grained access control. However, schemes are there which for more security increases the key size which ultimately leads to high encryption and decryption time. Also, there is no provision for handling the middle man attacks during data transfer. In this paper, a light-weight and more scalable encryption mechanism is provided which not only uses fewer resources for encoding and decoding but also improves the security along with faster encryption and decryption time. Moreover, this scheme provides an efficient key sharing mechanism for providing secure transfer to avoid any man-in-the-middle attacks. Also, due to fuzzy policies inclusion, chances are there to get approximation of user attributes available which makes the process fast and reliable and improves the performance of legitimate users.
Cao, S., Zou, J., Du, X., Zhang, X..  2020.  A Successive Framework: Enabling Accurate Identification and Secure Storage for Data in Smart Grid. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
Due to malicious eavesdropping, forgery as well as other risks, it is challenging to dispose and store collected power data from smart grid in secure manners. Blockchain technology has become a novel method to solve the above problems because of its de-centralization and tamper-proof characteristics. It is especially well known that data stored in blockchain cannot be changed, so it is vital to seek out perfect mechanisms to ensure that data are compliant with high quality (namely, accuracy of the power data) before being stored in blockchain. This will help avoid losses due to low-quality data modification or deletion as needed in smart grid. Thus, we apply the parallel vision theory on the identification of meter readings to realize accurate power data. A cloud-blockchain fusion model (CBFM) is proposed for the storage of accurate power data, allowing for secure conducting of flexible transactions. Only power data calculated by parallel visual system instead of image data collected originally via robot would be stored in blockchain. Hence, we define the quality assurance before data uploaded to blockchain and security guarantee after data stored in blockchain as a successive framework, which is a brand new solution to manage efficiency and security as a whole for power data and data alike in other scenes. Security analysis and performance evaluations are performed, which prove that CBFM is highly secure and efficient impressively.
Riaz, S., Khan, A. H., Haroon, M., Latif, S., Bhatti, S..  2020.  Big Data Security and Privacy: Current Challenges and Future Research perspective in Cloud Environment. 2020 International Conference on Information Management and Technology (ICIMTech). :977—982.

Cloud computing is an Internet-based technology that emerging rapidly in the last few years due to popular and demanded services required by various institutions, organizations, and individuals. structured, unstructured, semistructured data is transfer at a record pace on to the cloud server. These institutions, businesses, and organizations are shifting more and more increasing workloads on cloud server, due to high cost, space and maintenance issues from big data, cloud computing will become a potential choice for the storage of data. In Cloud Environment, It is obvious that data is not secure completely yet from inside and outside attacks and intrusions because cloud servers are under the control of a third party. The Security of data becomes an important aspect due to the storage of sensitive data in a cloud environment. In this paper, we give an overview of characteristics and state of art of big data and data security & privacy top threats, open issues and current challenges and their impact on business are discussed for future research perspective and review & analysis of previous and recent frameworks and architectures for data security that are continuously established against threats to enhance how to keep and store data in the cloud environment.

Huang, H., Zhou, S., Lin, J., Zhang, K., Guo, S..  2020.  Bridge the Trustworthiness Gap amongst Multiple Domains: A Practical Blockchain-based Approach. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
In isolated network domains, global trustworthiness (e.g., consistent network view) is critical to the multiple-domain business partners who aim to perform the trusted corporations depending on each isolated network view. However, to achieve such global trustworthiness across distributed network domains is a challenge. This is because when multiple-domain partners are required to exchange their local domain views with each other, it is difficult to ensure the data trustworthiness among them. In addition, the isolated domain view in each partner is prone to be destroyed by malicious falsification attacks. To this end, we propose a blockchain-based approach that can ensure the trustworthiness among multiple-party domains. In this paper, we mainly present the design and implementation of the proposed trustworthiness-protection system. A cloud-based prototype and a local testbed are developed based on Ethereum. Finally, experimental results demonstrate the effectiveness of the proposed prototype and testbed.
Lee, J., Chen, H., Young, J., Kim, H..  2020.  RISC-V FPGA Platform Toward ROS-Based Robotics Application. 2020 30th International Conference on Field-Programmable Logic and Applications (FPL). :370—370.

RISC-V is free and open standard instruction set architecture following reduced instruction set computer principle. Because of its openness and scalability, RISC-V has been adapted not only for embedded CPUs such as mobile and IoT market, but also for heavy-workload CPUs such as the data center or super computing field. On top of it, Robotics is also a good application of RISC-V because security and reliability become crucial issues of robotics system. These problems could be solved by enthusiastic open source community members as they have shown on open source operating system. However, running RISC-V on local FPGA becomes harder than before because now RISC-V foundation are focusing on cloud-based FPGA environment. We have experienced that recently released OS and toolchains for RISC-V are not working well on the previous CPU image for local FPGA. In this paper we design the local FPGA platform for RISC-V processor and run the robotics application on mainstream Robot Operating System on top of the RISC-V processor. This platform allow us to explore the architecture space of RISC-V CPU for robotics application, and get the insight of the RISC-V CPU architecture for optimal performance and the secure system.

Sabek, I., Chandramouli, B., Minhas, U. F..  2019.  CRA: Enabling Data-Intensive Applications in Containerized Environments. 2019 IEEE 35th International Conference on Data Engineering (ICDE). :1762—1765.
Today, a modern data center hosts a wide variety of applications comprising batch, interactive, machine learning, and streaming applications. In this paper, we factor out the commonalities in a large majority of these applications, into a generic dataflow layer called Common Runtime for Applications (CRA). In parallel, another trend, with containerization technologies (e.g., Docker), has taken a serious hold on cloud-scale data centers, with direct implications on building next generation of data center applications. Container orchestrators (e.g., Kubernetes) have made deployment a lot easy, and they solve many infrastructure level problems, e.g., service discovery, auto-restart, and replication. For best in class performance, there is a need to marry the next generation applications with containerization technologies. To that end, CRA leverages and builds upon the containerization and resource orchestration capabilities of Kubernetes/Docker, and makes it easy to build a wide range of cloud-edge applications on top. To the best of our knowledge, we are the first to present a cloud native runtime for building data center applications. We show the efficiency of CRA through various micro-benchmarking experiments.
Liu, F., Li, J., Wang, Y., Li, L..  2019.  Kubestorage: A Cloud Native Storage Engine for Massive Small Files. 2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC). :1—4.
Cloud Native, the emerging computing infrastructure has become a new trend for cloud computing, especially after the development of containerization technology such as docker and LXD, and the orchestration system for them like Kubernetes and Swarm. With the growing popularity of Cloud Native, the following problems have been raised: (i) most Cloud Native applications were designed for making full use of the cloud platform, but their file storage has not been completely optimized for adapting it. (ii) the traditional file system is designed as a utility for storing and retrieving files, usually built into the kernel of the operating systems. But when placing it to a large-scale condition, like a network storage server shared by thousands of computing instances, and stores millions of files, it will be slow and even unstable. (iii) most storage solutions use metadata for faster tracking of files, but the metadata itself will take up a lot of space, and the capacity of it is usually limited. If the file system store metadata directly into hard disk without caching, the tracking of massive small files will be a lot slower. (iv) The traditional object storage solution can't provide enough features to make itself more practical on the cloud such as caching and auto replication. This paper proposes a new storage engine based on the well-known Haystack storage engine, optimized in terms of service discovery and Automated fault tolerance, make it more suitable for Cloud Native infrastructure, deployment and applications. We use the object storage model to solve the large and high-frequency file storage needs, offering a simple and unified set of APIs for application to access. We also take advantage of Kubernetes' sophisticated and automated toolchains to make cloud storage easier to deploy, more flexible to scale, and more stable to run.
Kumar, S., Vasthimal, D. K..  2019.  Raw Cardinality Information Discovery for Big Datasets. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :200—205.
Real-time discovery of all different types of unique attributes within unstructured data is a challenging problem to solve when dealing with multiple petabytes of unstructured data volume everyday. Popular discovery solutions such as the creation of offline jobs to uniquely identify attributes or running aggregation queries on raw data sets limits real time discovery use-cases and often results into poor resource utilization. The discovery information must be treated as a parallel problem to just storing raw data sets efficiently onto back-end big data systems. Solving the discovery problem by creating a parallel discovery data store infrastructure has multiple benefits as it allows such to channel the actual search queries against the raw data set in much more funneled manner instead of being widespread across the entire data sets. Such focused search queries and data separation are far more performant and requires less compute and memory footprint.
Payne, J., Kundu, A..  2019.  Towards Deep Federated Defenses Against Malware in Cloud Ecosystems. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :92—100.

In cloud computing environments with many virtual machines, containers, and other systems, an epidemic of malware can be crippling and highly threatening to business processes. In this vision paper, we introduce a hierarchical approach to performing malware detection and analysis using several recent advances in machine learning on graphs, hypergraphs, and natural language. We analyze individual systems and their logs, inspecting and understanding their behavior with attentional sequence models. Given a feature representation of each system's logs using this procedure, we construct an attributed network of the cloud with systems and other components as vertices and propose an analysis of malware with inductive graph and hypergraph learning models. With this foundation, we consider the multicloud case, in which multiple clouds with differing privacy requirements cooperate against the spread of malware, proposing the use of federated learning to perform inference and training while preserving privacy. Finally, we discuss several open problems that remain in defending cloud computing environments against malware related to designing robust ecosystems, identifying cloud-specific optimization problems for response strategy, action spaces for malware containment and eradication, and developing priors and transfer learning tasks for machine learning models in this area.

Silva, J. L. da, Assis, M. M., Braga, A., Moraes, R..  2019.  Deploying Privacy as a Service within a Cloud-Based Framework. 2019 9th Latin-American Symposium on Dependable Computing (LADC). :1–4.
Continuous monitoring and risk assessment of privacy violations on cloud systems are needed by anyone who has business needs subject to privacy regulations. Compliance to such regulations in dynamic systems demands appropriate techniques, tools and instruments. As a Service concepts can be a good option to support this task. Previous work presented PRIVAaaS, a software toolkit that allows controlling and reducing data leakages, thus preserving privacy, by providing anonymization capabilities to query-based systems. This short paper discusses the implementation details and deployment environment of an evolution of PRIVAaaS as a MAPE-K control loop within the ATMOSPHERE Platform. ATMOSPHERE is both a framework and a platform enabling the implementation of trustworthy cloud services. By enabling PRIVAaaS within ATMOSPHERE, privacy is made one of several trustworthiness properties continuously monitored and assessed by the platform with a software-based, feedback control loop known as MAPE-K.
Challagidad, P. S., Birje, M. N..  2019.  Determination of Trustworthiness of Cloud Service Provider and Cloud Customer. 2019 5th International Conference on Advanced Computing Communication Systems (ICACCS). :839–843.
In service-oriented computing environment (e.g. cloud computing), Cloud Customers (CCs) and Cloud Service Providers (CSPs) require to calculate the trust ranks of impending partner prior to appealing in communications. Determining trustworthiness dynamically is a demanding dilemma in an open and dynamic environment (such as cloud computing) because of many CSPs providing same types of services. Presently, there are very less number of dynamic trust evaluation scheme that permits CCs to evaluate CSPs trustworthiness from multi-dimensional perspectives. Similarly, there is no scheme that permits CSPs to evaluate trustworthiness of CCs. This paper proposes a Multidimensional Dynamic Trust Evaluation Scheme (MDTES) that facilitates CCs to evaluate the trustworthiness of CSPs from various viewpoints. Similar approach can be employed by CSPs to evaluate the trustworthiness of CCs. The proposed MDTES helps CCs to choose trustworthy CSP and to have desired QoS requirements and CSPs to choose desired and legal CCs. The simulation results illustrate the MDTES is dynamic and steady in distinguishing trustworthy and untrustworthy CSPs and CCs.
Islam, M. S., Verma, H., Khan, L., Kantarcioglu, M..  2019.  Secure Real-Time Heterogeneous IoT Data Management System. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :228–235.
The growing adoption of IoT devices in our daily life engendered a need for secure systems to safely store and analyze sensitive data as well as the real-time data processing system to be as fast as possible. The cloud services used to store and process sensitive data are often come out to be vulnerable to outside threats. Furthermore, to analyze streaming IoT data swiftly, they are in need of a fast and efficient system. The Paper will envision the aspects of complexity dealing with real time data from various devices in parallel, building solution to ingest data from different IOT devices, forming a secure platform to process data in a short time, and using various techniques of IOT edge computing to provide meaningful intuitive results to users. The paper envisions two modules of building a real time data analytics system. In the first module, we propose to maintain confidentiality and integrity of IoT data, which is of paramount importance, and manage large-scale data analytics with real-time data collection from various IoT devices in parallel. We envision a framework to preserve data privacy utilizing Trusted Execution Environment (TEE) such as Intel SGX, end-to-end data encryption mechanism, and strong access control policies. Moreover, we design a generic framework to simplify the process of collecting and storing heterogeneous data coming from diverse IoT devices. In the second module, we envision a drone-based data processing system in real-time using edge computing and on-device computing. As, we know the use of drones is growing rapidly across many application domains including real-time monitoring, remote sensing, search and rescue, delivery of goods, security and surveillance, civil infrastructure inspection etc. This paper demonstrates the potential drone applications and their challenges discussing current research trends and provide future insights for potential use cases using edge and on-device computing.
Malvankar, A., Payne, J., Budhraja, K. K., Kundu, A., Chari, S., Mohania, M..  2019.  Malware Containment in Cloud. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :221—227.

Malware is pervasive and poses serious threats to normal operation of business processes in cloud. Cloud computing environments typically have hundreds of hosts that are connected to each other, often with high risk trust assumptions and/or protection mechanisms that are not difficult to break. Malware often exploits such weaknesses, as its immediate goal is often to spread itself to as many hosts as possible. Detecting this propagation is often difficult to address because the malware may reside in multiple components across the software or hardware stack. In this scenario, it is usually best to contain the malware to the smallest possible number of hosts, and it's also critical for system administration to resolve the issue in a timely manner. Furthermore, resolution often requires that several participants across different organizational teams scramble together to address the intrusion. In this vision paper, we define this problem in detail. We then present our vision of decentralized malware containment and the challenges and issues associated with this vision. The approach of containment involves detection and response using graph analytics coupled with a blockchain framework. We propose the use of a dominance frontier for profile nodes which must be involved in the containment process. Smart contracts are used to obtain consensus amongst the involved parties. The paper presents a basic implementation of this proposal. We have further discussed some open problems related to our vision.

Sun, Z., Du, P., Nakao, A., Zhong, L., Onishi, R..  2019.  Building Dynamic Mapping with CUPS for Next Generation Automotive Edge Computing. 2019 IEEE 8th International Conference on Cloud Networking (CloudNet). :1—6.

With the development of IoT and 5G networks, the demand for the next-generation intelligent transportation system has been growing at a rapid pace. Dynamic mapping has been considered one of the key technologies to reduce traffic accidents and congestion in the intelligent transportation system. However, as the number of vehicles keeps growing, a huge volume of mapping traffic may overload the central cloud, leading to serious performance degradation. In this paper, we propose and prototype a CUPS (control and user plane separation)-based edge computing architecture for the dynamic mapping and quantify its benefits by prototyping. There are a couple of merits of our proposal: (i) we can mitigate the overhead of the networks and central cloud because we only need to abstract and send global dynamic mapping information from the edge servers to the central cloud; (ii) we can reduce the response latency since the dynamic mapping traffic can be isolated from other data traffic by being generated and distributed from a local edge server that is deployed closer to the vehicles than the central server in cloud. The capabilities of our system have been quantified. The experimental results have shown our system achieves throughput improvement by more than four times, and response latency reduction by 67.8% compared to the conventional central cloud-based approach. Although these results are still obtained from the preliminary evaluations using our prototype system, we believe that our proposed architecture gives insight into how we utilize CUPS and edge computing to enable efficient dynamic mapping applications.

Xu, W., Peng, Y..  2018.  SharaBLE: A Software Framework for Shared Usage of BLE Devices over the Internet. 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). :381—385.

With the development of Internet of Things, numerous IoT devices have been brought into our daily lives. Bluetooth Low Energy (BLE), due to the low energy consumption and generic service stack, has become one of the most popular wireless communication technologies for IoT. However, because of the short communication range and exclusive connection pattern, a BLE-equipped device can only be used by a single user near the device. To fully explore the benefits of BLE and make BLE-equipped devices truly accessible over the Internet as IoT devices, in this paper, we propose a cloud-based software framework that can enable multiple users to interact with various BLE IoT devices over the Internet. This framework includes an agent program, a suite of services hosting in cloud, and a set of RESTful APIs exposed to Internet users. Given the availability of this framework, the access to BLE devices can be extended from local to the Internet scale without any software or hardware changes to BLE devices, and more importantly, shared usage of remote BLE devices over the Internet is also made available.

Li, W., Guo, D., Li, K., Qi, H., Zhang, J..  2018.  iDaaS: Inter-Datacenter Network as a Service. IEEE Transactions on Parallel and Distributed Systems. 29:1515—1529.

Increasing number of Internet-scale applications, such as video streaming, incur huge amount of wide area traffic. Such traffic over the unreliable Internet without bandwidth guarantee suffers unpredictable network performance. This result, however, is unappealing to the application providers. Fortunately, Internet giants like Google and Microsoft are increasingly deploying their private wide area networks (WANs) to connect their global datacenters. Such high-speed private WANs are reliable, and can provide predictable network performance. In this paper, we propose a new type of service-inter-datacenter network as a service (iDaaS), where traditional application providers can reserve bandwidth from those Internet giants to guarantee their wide area traffic. Specifically, we design a bandwidth trading market among multiple iDaaS providers and application providers, and concentrate on the essential bandwidth pricing problem. The involved challenging issue is that the bandwidth price of each iDaaS provider is not only influenced by other iDaaS providers, but also affected by the application providers. To address this issue, we characterize the interaction between iDaaS providers and application providers using a Stackelberg game model, and analyze the existence and uniqueness of the equilibrium. We further present an efficient bandwidth pricing algorithm by blending the advantage of a geometrical Nash bargaining solution and the demand segmentation method. For comparison, we present two bandwidth reservation algorithms, where each iDaaS provider's bandwidth is reserved in a weighted fair manner and a max-min fair manner, respectively. Finally, we conduct comprehensive trace-driven experiments. The evaluation results show that our proposed algorithms not only ensure the revenue of iDaaS providers, but also provide bandwidth guarantee for application providers with lower bandwidth price per unit.

Yang, R., Ouyang, X., Chen, Y., Townend, P., Xu, J..  2018.  Intelligent Resource Scheduling at Scale: A Machine Learning Perspective. 2018 IEEE Symposium on Service-Oriented System Engineering (SOSE). :132—141.

Resource scheduling in a computing system addresses the problem of packing tasks with multi-dimensional resource requirements and non-functional constraints. The exhibited heterogeneity of workload and server characteristics in Cloud-scale or Internet-scale systems is adding further complexity and new challenges to the problem. Compared with,,,, existing solutions based on ad-hoc heuristics, Machine Learning (ML) has the potential to improve further the efficiency of resource management in large-scale systems. In this paper we,,,, will describe and discuss how ML could be used to understand automatically both workloads and environments, and to help to cope with scheduling-related challenges such as consolidating co-located workloads, handling resource requests, guaranteeing application's QoSs, and mitigating tailed stragglers. We will introduce a generalized ML-based solution to large-scale resource scheduling and demonstrate its effectiveness through a case study that deals with performance-centric node classification and straggler mitigation. We believe that an MLbased method will help to achieve architectural optimization and efficiency improvement.

Zhang, Y., Deng, L., Chen, M., Wang, P..  2018.  Joint Bidding and Geographical Load Balancing for Datacenters: Is Uncertainty a Blessing or a Curse? IEEE/ACM Transactions on Networking. 26:1049—1062.

We consider the scenario where a cloud service provider (CSP) operates multiple geo-distributed datacenters to provide Internet-scale service. Our objective is to minimize the total electricity and bandwidth cost by jointly optimizing electricity procurement from wholesale markets and geographical load balancing (GLB), i.e., dynamically routing workloads to locations with cheaper electricity. Under the ideal setting where exact values of market prices and workloads are given, this problem reduces to a simple linear programming and is easy to solve. However, under the realistic setting where only distributions of these variables are available, the problem unfolds into a non-convex infinite-dimensional one and is challenging to solve. One of our main contributions is to develop an algorithm that is proven to solve the challenging problem optimally, by exploring the full design space of strategic bidding. Trace-driven evaluations corroborate our theoretical results, demonstrate fast convergence of our algorithm, and show that it can reduce the cost for the CSP by up to 20% as compared with baseline alternatives. This paper highlights the intriguing role of uncertainty in workloads and market prices, measured by their variances. While uncertainty in workloads deteriorates the cost-saving performance of joint electricity procurement and GLB, counter-intuitively, uncertainty in market prices can be exploited to achieve a cost reduction even larger than the setting without price uncertainty.

Kathiravelu, P., Chiesa, M., Marcos, P., Canini, M., Veiga, L..  2018.  Moving Bits with a Fleet of Shared Virtual Routers. 2018 IFIP Networking Conference (IFIP Networking) and Workshops. :1—9.

The steady decline of IP transit prices in the past two decades has helped fuel the growth of traffic demands in the Internet ecosystem. Despite the declining unit pricing, bandwidth costs remain significant due to ever-increasing scale and reach of the Internet, combined with the price disparity between the Internet's core hubs versus remote regions. In the meantime, cloud providers have been auctioning underutilized computing resources in their marketplace as spot instances for a much lower price, compared to their on-demand instances. This state of affairs has led the networking community to devote extensive efforts to cloud-assisted networks - the idea of offloading network functionality to cloud platforms, ultimately leading to more flexible and highly composable network service chains.We initiate a critical discussion on the economic and technological aspects of leveraging cloud-assisted networks for Internet-scale interconnections and data transfers. Namely, we investigate the prospect of constructing a large-scale virtualized network provider that does not own any fixed or dedicated resources and runs atop several spot instances. We construct a cloud-assisted overlay as a virtual network provider, by leveraging third-party cloud spot instances. We identify three use case scenarios where such approach will not only be economically and technologically viable but also provide performance benefits compared to current commercial offerings of connectivity and transit providers.