Visible to the public Biblio

Found 1497 results

Filters: Keyword is cryptography  [Clear All Filters]
Basin, David, Lochbihler, Andreas, Maurer, Ueli, Sefidgar, S. Reza.  2021.  Abstract Modeling of System Communication in Constructive Cryptography using CryptHOL. 2021 IEEE 34th Computer Security Foundations Symposium (CSF). :1–16.
Proofs in simulation-based frameworks have the greatest rigor when they are machine checked. But the level of details in these proofs surpasses what the formal-methods community can handle with existing tools. Existing formal results consider streamlined versions of simulation-based frameworks to cope with this complexity. Hence, a central question is how to abstract details from composability results and enable their formal verification.In this paper, we focus on the modeling of system communication in composable security statements. Existing formal models consider fixed communication patterns to reduce the complexity of their proofs. However, as we will show, this can affect the reusability of security statements. We propose an abstract approach to modeling system communication in Constructive Cryptography that avoids this problem. Our approach is suitable for mechanized verification and we use CryptHOL, a framework for developing mechanized cryptography proofs, to implement it in the Isabelle/HOL theorem prover. As a case study, we formalize the construction of a secure channel using Diffie-Hellman key exchange and a one-time-pad.
Sani, Abubakar Sadiq, Yuan, Dong, Meng, Ke, Dong, Zhao Yang.  2021.  R-Chain: A Universally Composable Relay Resilience Framework for Smart Grids. 2021 IEEE Power & Energy Society General Meeting (PESGM). :01–05.
Smart grids can be exposed to relay attacks (or wormhole attacks) resulting from weaknesses in cryptographic operations such as authentication and key derivation associated with process automation protocols. Relay attacks refer to attacks in which authentication is evaded without needing to attack the smart grid itself. By using a universal composability model that provides a strong security notion for designing cryptographic operations, we formulate the necessary relay resilience settings for strengthening authentication and key derivation and enhancing relay security in process automation protocols in this paper. We introduce R-Chain, a universally composable relay resilience framework that prevents bypass of cryptographic operations. Our framework provides an ideal chaining functionality that integrates all cryptographic operations such that all outputs from a preceding operation are used as input to the subsequent operation to support relay resilience. We apply R-Chain to provide relay resilience in a practical smart grid process automation protocol, namely WirelessHART.
Zhan, Zhi-Hui, Wu, Sheng-Hao, Zhang, Jun.  2021.  A New Evolutionary Computation Framework for Privacy-Preserving Optimization. 2021 13th International Conference on Advanced Computational Intelligence (ICACI). :220—226.
Evolutionary computation (EC) is a kind of advanced computational intelligence (CI) algorithm and advanced artificial intelligence (AI) algorithm. EC algorithms have been widely studied for solving optimization and scheduling problems in various real-world applications, which act as one of the Big Three in CI and AI, together with fuzzy systems and neural networks. Even though EC has been fast developed in recent years, there is an assumption that the algorithm designer can obtain the objective function of the optimization problem so that they can calculate the fitness values of the individuals to follow the “survival of the fittest” principle in natural selection. However, in a real-world application scenario, there is a kind of problem that the objective function is privacy so that the algorithm designer can not obtain the fitness values of the individuals directly. This is the privacy-preserving optimization problem (PPOP) where the assumption of available objective function does not check out. How to solve the PPOP is a new emerging frontier with seldom study but is also a challenging research topic in the EC community. This paper proposes a rank-based cryptographic function (RCF) to protect the fitness value information. Especially, the RCF is adopted by the algorithm user to encrypt the fitness values of all the individuals as rank so that the algorithm designer does not know the exact fitness information but only the rank information. Nevertheless, the RCF can protect the privacy of the algorithm user but still can provide sufficient information to the algorithm designer to drive the EC algorithm. We have applied the RCF privacy-preserving method to two typical EC algorithms including particle swarm optimization (PSO) and differential evolution (DE). Experimental results show that the RCF-based privacy-preserving PSO and DE can solve the PPOP without performance loss.
Ganesan, Dhandapani, Sharum, Mohd Yunus, Mohd Sani, Nor Fazlida binti, Mohd Ariffin, Noor Afiza bt.  2021.  A Survey on Advanced Schemes applied within Trusted Platform modules (TPM) and IaaS in cloud computing. 2021 5th International Conference on Computing Methodologies and Communication (ICCMC). :317—322.
Trusted Platform Modules (TPM) have grown to be crucial safeguards from the number of software-based strikes. By giving a restricted range of cryptographic providers by way of a well-defined user interface, divided as a result of the program itself, TPM and Infrastructure as a service (IaaS) can function as a root of loyalty so when a foundation aimed at advanced equal protection methods. This information studies the works aimed at uses on TPM within the cloud computing atmosphere, by journal times composed somewhere among 2013 as well as 2020. It identifies the present fashion as well as goals from these technologies within the cloud, as well as the kind of risks that it mitigates. The primary investigation is being focused on the TPM's association to the IaaS security based on the authorization and the enabling schema for integrity. Since integrity measurement is among the key uses of TPM and IaaS, particular focus is given towards the evaluation of operating period phases as well as S/W levels it's put on to. Finally, the deep survey on recent schemes can be applied on Cloud Environment.
Yeboah-Ofori, Abel, Agbodza, Christian Kwame, Opoku-Boateng, Francisca Afua, Darvishi, Iman, Sbai, Fatim.  2021.  Applied Cryptography in Network Systems Security for Cyberattack Prevention. 2021 International Conference on Cyber Security and Internet of Things (ICSIoT). :43—48.
Application of cryptography and how various encryption algorithms methods are used to encrypt and decrypt data that traverse the network is relevant in securing information flows. Implementing cryptography in a secure network environment requires the application of secret keys, public keys, and hash functions to ensure data confidentiality, integrity, authentication, and non-repudiation. However, providing secure communications to prevent interception, interruption, modification, and fabrication on network systems has been challenging. Cyberattacks are deploying various methods and techniques to break into network systems to exploit digital signatures, VPNs, and others. Thus, it has become imperative to consider applying techniques to provide secure and trustworthy communication and computing using cryptography methods. The paper explores applied cryptography concepts in information and network systems security to prevent cyberattacks and improve secure communications. The contribution of the paper is threefold: First, we consider the various cyberattacks on the different cryptography algorithms in symmetric, asymmetric, and hashing functions. Secondly, we apply the various RSA methods on a network system environment to determine how the cyberattack could intercept, interrupt, modify, and fabricate information. Finally, we discuss the secure implementations methods and recommendations to improve security controls. Our results show that we could apply cryptography methods to identify vulnerabilities in the RSA algorithm in secure computing and communications networks.
Butler, Martin, Butler, Rika.  2021.  The Influence of Mobile Operating Systems on User Security Behavior. 2021 IEEE 5th International Conference on Cryptography, Security and Privacy (CSP). :134—138.
Mobile security remains a concern for multiple stakeholders. Safe user behavior is crucial key to avoid and mitigate mobile threats. The research used a survey design to capture key constructs of mobile user threat avoidance behavior. Analysis revealed that there is no significant difference between the two key drivers of secure behavior, threat appraisal and coping appraisal, for Android and iOS users. However, statistically significant differences in avoidance motivation and avoidance behavior of users of the two operating systems were displayed. This indicates that existing threat avoidance models may be insufficient to comprehensively deal with factors that affect mobile user behavior. A newly introduced variable, perceived security, shows a difference in the perceptions of their level of protection among the users of the two operating systems, providing a new direction for research into mobile security.
Li, Xianxian, Fu, Xuemei, Yu, Feng, Shi, Zhenkui, Li, Jie, Yang, Junhao.  2021.  A Private Statistic Query Scheme for Encrypted Electronic Medical Record System. 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD). :1033—1039.
In this paper, we propose a scheme that supports statistic query and authorized access control on an Encrypted Electronic Medical Records Databases(EMDB). Different from other schemes, it is based on Differential-Privacy(DP), which can protect the privacy of patients. By deploying an improved Multi-Authority Attribute-Based Encryption(MA-ABE) scheme, all authorities can distribute their search capability to clients under different authorities without additional negotiations. To our best knowledge, there are few studies on statistical queries on encrypted data. In this work, we consider that support differentially-private statistical queries. To improve search efficiency, we leverage the Bloom Filter(BF) to judge whether the keywords queried by users exists. Finally, we use experiments to verify and evaluate the feasibility of our proposed scheme.
Ménétrey, Jämes, Pasin, Marcelo, Felber, Pascal, Schiavoni, Valerio.  2021.  Twine: An Embedded Trusted Runtime for WebAssembly. 2021 IEEE 37th International Conference on Data Engineering (ICDE). :205—216.
WebAssembly is an Increasingly popular lightweight binary instruction format, which can be efficiently embedded and sandboxed. Languages like C, C++, Rust, Go, and many others can be compiled into WebAssembly. This paper describes Twine, a WebAssembly trusted runtime designed to execute unmodified, language-independent applications. We leverage Intel SGX to build the runtime environment without dealing with language-specific, complex APIs. While SGX hardware provides secure execution within the processor, Twine provides a secure, sandboxed software runtime nested within an SGX enclave, featuring a WebAssembly system interface (WASI) for compatibility with unmodified WebAssembly applications. We evaluate Twine with a large set of general-purpose benchmarks and real-world applications. In particular, we used Twine to implement a secure, trusted version of SQLite, a well-known full-fledged embeddable database. We believe that such a trusted database would be a reasonable component to build many larger application services. Our evaluation shows that SQLite can be fully executed inside an SGX enclave via WebAssembly and existing system interface, with similar average performance overheads. We estimate that the performance penalties measured are largely compensated by the additional security guarantees and its full compatibility with standard WebAssembly. An indepth analysis of our results indicates that performance can be greatly improved by modifying some of the underlying libraries. We describe and implement one such modification in the paper, showing up to 4.1 × speedup. Twine is open-source, available at GitHub along with instructions to reproduce our experiments.
Nariezhnii, Oleksii, Grinenko, Tetiana.  2021.  Method for Increasing the Accuracy of the Synchronization of Generation Random Sequences Using Control and Correction Stations. 2021 IEEE 8th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T). :309—314.
This article describes the process of synchronizing the generation of random sequences by a quantum random number generator (QRNG) that can be used as secret keys for known cryptographic transformations. The subject of the research is a method for synchronizing the generation of random QRNG sequences based on L1 (C/A) signals of the global positioning system (GPS) using control correcting information received from control correcting stations.
Perez, John Paul G., Sigua, Sean Kevin P., Cortez, Dan Michael A., Mata, Khatalyn E., Regala, Richard C., Alipio, Antolin J., Blanco, Mark Christopher R., Sison, Ariel M..  2021.  A Modified Key Generation Scheme of Vigenère Cipher Algorithm using Pseudo-Random Number and Alphabet Extension. 2021 7th International Conference on Computer and Communications (ICCC). :565—569.
In recent years, many modifications have been done to combat the weaknesses of the Vigenère Cipher Algorithm. Several studies have been carried out to rectify the flaw of the algorithm’s repeating key nature by increasing the key length equal to that of the plain text. However, some characters cannot be encrypted due to the limited set of characters in the key. This paper modified the algorithm’s key generation process using a Pseudo-Random Number Generator to improve the algorithm’s security and expanded the table of characters to up to 190 characters. The results show that based on Monobit examination and frequency analysis, the repeating nature of the key is non-existent, and the generated key can be used to encrypt a larger set of characters. The ciphertext has a low IC value of 0.030, which is similar to a random string and polyalphabetic cipher with an IC value of 0.038 but not equal to a monoalphabetic cipher with an IC value of 0.065. Results show that the modified version of the algorithm performs better than some of the recent studies conducted on it
Urooj, Umara, Maarof, Mohd Aizaini Bin, Al-rimy, Bander Ali Saleh.  2021.  A proposed Adaptive Pre-Encryption Crypto-Ransomware Early Detection Model. 2021 3rd International Cyber Resilience Conference (CRC). :1–6.
Crypto-ransomware is a malware that uses the system’s cryptography functions to encrypt user data. The irreversible effect of crypto-ransomware makes it challenging to survive the attack compared to other malware categories. When a crypto-ransomware attack encrypts user files, it becomes difficult to access these files without having the decryption key. Due to the availability of ransomware development tool kits like Ransomware as a Service (RaaS), many ransomware variants are being developed. This contributes to the rise of ransomware attacks witnessed nowadays. However, the conventional approaches employed by malware detection solutions are not suitable to detect ransomware. This is because ransomware needs to be detected as early as before the encryption takes place. These attacks can effectively be handled only if detected during the pre-encryption phase. Early detection of ransomware attacks is challenging due to the limited amount of data available before encryption. An adaptive pre-encryption model is proposed in this paper which is expected to deal with the population concept drift of crypto-ransomware given the limited amount of data collected during the pre-encryption phase of the attack lifecycle. With such adaptability, the model can maintain up-to-date knowledge about the attack behavior and identify the polymorphic ransomware that continuously changes its behavior.
Kaur, Amanpreet, Singh, Gurpreet.  2021.  Encryption Algorithms based on Security in IoT (Internet of Things). 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC). :482–486.
The Internet is evolving everywhere and expanding its entity globally. The IoT(Internet of things) is a new and interesting concept introduced in this world of internet. Generally it is interconnected computing device which can be embedded in our daily routine objects through which we can send and receive data. It is beyond connecting computers and laptops only although it can connect billion of devices. It can be described as reliable method of communication that also make use of other technologies like wireless sensor, QR code etc. IoT (Internet of Things) is making everything smart with use of technology like smart homes, smart cities, smart watches. In this chapter, we will study the security algorithms in IoT (Internet of Things) which can be achieved with encryption process. In the world of IoT, data is more vulnerable to threats. So as to protect data integrity, data confidentiality, we have Light weight Encryption Algorithms like symmetric key cryptography and public key cryptography for secure IoT (Internet of Things) named as Secure IoT. Because it is not convenient to use full encryption algorithms that require large memory size, large program code and larger execution time. Light weight algorithms meet all resource constraints of small memory size, less execution time and efficiency. The algorithms can be measured in terms of key size, no of blocks and algorithm structure, chip size and energy consumption. Light Weight Techniques provides security to smart object networks and also provides efficiency. In Symmetric Key Cryptography, two parties can have identical keys but has some practical difficulty. Public Key Cryptography uses both private and public key which are related to each other. Public key is known to everyone while private key is kept secret. Public Key cryptography method is based on mathematical problems. So, to implement this method, one should have a great expertise.
Jiang, Qingwei.  2021.  An Image Hiding Algorithm based on Bit Plane and Two-Dimensional Code. 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV). :851–854.
An image hiding algorithm based on bit plane and two-dimensional code is proposed in this paper. The main characteristic of information hiding is to use the information redundant data of the existing image, to embed the information into these redundant data by the information hiding algorithm, or to partially replace redundant information with information to be embedded to achieve a visual invisible purpose. We first analyze the color index usage frequency of the block index matrix in the algorithm, and calculate the distance between the color of the block index matrix with only one color and the other color in the palette that is closest to the color. Then, the QR model and the compression model are applied to improve the efficiency. We compare the proposed model with the stateof-the-art models.
Papaspirou, Vassilis, Maglaras, Leandros, Ferrag, Mohamed Amine, Kantzavelou, Ioanna, Janicke, Helge, Douligeris, Christos.  2021.  A novel Two-Factor HoneyToken Authentication Mechanism. 2021 International Conference on Computer Communications and Networks (ICCCN). :1–7.
The majority of systems rely on user authentication on passwords, but passwords have so many weaknesses and widespread use that easily raise significant security concerns, regardless of their encrypted form. Users hold the same password for different accounts, administrators never check password files for flaws that might lead to a successful cracking, and the lack of a tight security policy regarding regular password replacement are a few problems that need to be addressed. The proposed research work aims at enhancing this security mechanism, prevent penetrations, password theft, and attempted break-ins towards securing computing systems. The selected solution approach is two-folded; it implements a two-factor authentication scheme to prevent unauthorized access, accompanied by Honeyword principles to detect corrupted or stolen tokens. Both can be integrated into any platform or web application with the use of QR codes and a mobile phone.
Sintyaningrum, Desti Eka, Muladi, Ashar, Muhammad.  2021.  The Encryption of Electronic Professional Certificate by Using Digital Signature and QR Code. 2021 International Conference on Converging Technology in Electrical and Information Engineering (ICCTEIE). :19–24.
In Indonesia, there have been many certificates forgery happened. The lack of security system for the certificate and the difficulty in verification process toward the authenticity certificate become the main factor of the certificate forgery cases happen. The aim of this research is to improve the security system such digital signature and QR code to authenticate the authenticity certificate and to facilitate the user in verify their certificate and also to minimize the certificate forgery cases. The aim of this research is to improve the security system such digital signature and QR code to authenticate the authenticity certificate and to facilitate the user in verify their certificate and also to minimize the certificate forgery cases. The application is built in web system to facilitate the user to access it everywhere and any time. This research uses Research and Development method for problem analysis and to develop application using Software Development Life Cycle method with waterfall approach. Black box testing is chosen as testing method for each function in this system. The result of this research is creatcate application that’s designed to support the publishing and the verification of the electronic authenticity certificate by online. There are two main schemes in system: the scheme in making e-certificate and the scheme of verification QR Code. There is the electronic professional certificate application by applying digital signature and QR Code. It can publish e-certificate that can prevent from criminal action such certificate forgery, that’s showed in implementation and can be proven in test.
Mittal, Sonam, Kaur, Prabhjot, Ramkumar, K.R..  2021.  Achieving Privacy and Security Using QR-Code through Homomorphic Encryption and Steganography. 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1–6.
Security is a most concerning matter for client's data in today's emerging technological world in each field, like banking, management, retail, shopping, communication, education, etc. Arise in cyber-crime due to the black hat community, there is always a need for a better way to secure the client's sensitive information, Security is the key point in online banking as the threat of unapproved online access to a client's data is very significant as it ultimately danger to bank reputation. The more secure and powerful methods can allow a client to work with untrusted parties. Paper is focusing on how secure banking transaction system can work by using homomorphic encryption and steganography techniques. For data encryption NTRU, homomorphic encryption can be used and to hide details through the QR code, a cover image can be embed using steganography techniques.
Ismail, Safwati, Alkawaz, Mohammed Hazim, Kumar, Alvin Ebenazer.  2021.  Quick Response Code Validation and Phishing Detection Tool. 2021 IEEE 11th IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE). :261–266.
A Quick Response (QR) Code is a type of barcode that can be read by the digital devices and which stores the information in a square-shaped. The QR Code readers can extract data from the patterns which are presented in the QR Code matrix. A QR Code can be acting as an attack vector that can harm indirectly. In such case a QR Code can carry malicious or phishing URLs and redirect users to a site which is well conceived by the attacker and pretends to be an authorized one. Once the QR Code is decoded the commands are triggered and executed, causing damage to information, operating system and other possible sequence the attacker expects to gain. In this paper, a new model for QR Code authentication and phishing detection has been presented. The proposed model will be able to detect the phishing and malicious URLs in the process of the QR Code validation as well as to prevent the user from validating it. The development of this application will help to prevent users from being tricked by the harmful QR Codes.
Ahmad, Lina, Al-Sabha, Rania, Al-Haj, Ali.  2021.  Design and Implementation of a Secure QR Payment System Based on Visual Cryptography. 2021 7th International Conference on Information Management (ICIM). :40–44.
In this paper, we will describe the design and implementation of a secure payment system based on QR codes. These QR codes have been extensively used in recent years since they speed up the payment process and provide users with ultimate convenience. However, as convenient as they may sound, QR-based online payment systems are vulnerable to different types of attacks. Therefore, transaction processing needs to be secure enough to protect the integrity and confidentiality of every payment process. Moreover, the online payment system must provide authenticity for both the sender and receiver of each transaction. In this paper, the security of the proposed QR-based system is provided using visual cryptography. The proposed system consists of a mobile application and a payment gateway server that implements visual cryptography. The application provides a simple and user-friendly interface for users to carry out payment transactions in user-friendly secure environment.
Nagata, Daiya, Hayashi, Yu-ichi, Mizuki, Takaaki, Sone, Hideaki.  2021.  QR Bar-Code Designed Resistant against EM Information Leakage. 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). :1–4.
A threat of eavesdropping display screen image of information device is caused by unintended EM leakage emanation. QR bar-code is capable of error correction, and its information is possibly read from a damaged screen image from EM leakage. A new design of QR bar-code proposed in this paper uses selected colors in consideration of correlation between the EM wave leakage and display color. Proposed design of QR bar-code keeps error correction of displayed image, and makes it difficult to read information on the eavesdropped image.
Razaque, Abdul, Alexandrov, Vladislav, Almiani, Muder, Alotaibi, Bandar, Alotaibi, Munif, Al-Dmour, Ayman.  2021.  Comparative Analysis of Digital Signature and Elliptic Curve Digital Signature Algorithms for the Validation of QR Code Vulnerabilities. 2021 Eighth International Conference on Software Defined Systems (SDS). :1–7.
Quick response (QR) codes are currently used ubiq-uitously. Their interaction protocol design is initially unsecured. It forces users to scan QR codes, which makes it harder to differentiate a genuine code from a malicious one. Intruders can change the original QR code and make it fake, which can lead to phishing websites that collect sensitive data. The interaction model can be improved and made more secure by adding some modifications to the backend side of the application. This paper addresses the vulnerabilities of QR codes and recommends improvements in security design. Furthermore, two state-of-the-art algorithms, Digital Signature (DS) and Elliptic Curve Digital Signature (ECDS), are analytically compared to determine their strengths in QR code security.
Lei Lei, Joanna Tan, Chuin, Liew Siau, Ernawan, Ferda.  2021.  An Image Watermarking based on Multi-level Authentication for Quick Response Code. 2021 International Conference on Software Engineering & Computer Systems and 4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM). :417–422.
This research presented a digital watermarking scheme using multi-level authentication for protecting QR code images in order to provide security and authenticity. This research focuses on the improved digital watermarking scheme for QR code security that can protect the confidentiality of the information stored in QR code images from the public. Information modification, malicious attack, and copyright violation may occur due to weak security and disclosure pattern of QR code. Digital watermarking can be a solution to reduce QR code imitation and increase QR code security and authenticity. The objectives of this research are to provide QR code image authentication and security, tamper localization, and recovery scheme on QR code images. This research proposed digital watermarking for QR code images based on multi-level authentication with Least Significant Bit (LSB) and SHA-256 hash function. The embedding and extracting watermark utilized region of Interest (ROI) and Region of Non-Interest (RONI) in the spatial domain for improving the depth and width of QR code application in the anti-counterfeiting field. The experiments tested the reversibility and robustness of the proposed scheme after a tempered watermarked QR code image. The experimental results show that the proposed scheme provides multi-level security, withstands tampered attacks and it provided high imperceptibility of QR code image.
Bishwas, Arit Kumar, Advani, Jai.  2021.  Managing Cyber Security with Quantum Techniques. 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET). :1—7.
Recent advancements in quantum information theory and quantum computation intend the possibilities of breaking the existing classical cryptographic systems. To mitigate these kinds of threats with quantum computers we need some advanced quantum-based cryptographic systems. The research orientation towards this is tremendous in recent years, and many excellent approaches have been reported. In this article, we discuss the probable approaches of the quantum cryptographic systems from implementation point of views to handle the post-quantum cryptographic attacks.
Ilias, Shaik Mohammed, Sharmila, V.Ceronmani.  2021.  Recent Developments and Methods of Cloud Data Security in Post-Quantum Perspective. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). :1293—1300.
Cloud computing has changed the paradigm of using computing resources. It has shifted from traditional storage and computing to Internet based computing leveraging economy of scale, cost saving, elimination of data redundancy, scalability, availability and regulatory compliance. With these, cloud also brings plenty of security issues. As security is not a one-time solution, there have been efforts to investigate and provide countermeasures. In the wake of emerging quantum computers, the aim of post-quantum cryptography is to develop cryptography schemes that are secure against both classical computers and quantum computers. Since cloud is widely used across the globe for outsourcing data, it is essential to strive at providing betterment of security schemes from time to time. This paper reviews recent development, methods of cloud data security in post-quantum perspectives. It provides useful insights pertaining to the security schemes used to safeguard data dynamics associated with cloud computing. The findings of this paper gives directions for further research in pursuit of more secure cloud data storage and retrieval.
Ali, Arshad.  2021.  A Pragmatic Analysis of Pre- and Post-Quantum Cyber Security Scenarios. 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST). :686—692.
The advancements in quantum computing and quantum cryptology have recently started to gain momentum and transformation of usable quantum technologies from dream to reality has begun to look viable. This has created an immediate requirement to comprehend quantum attacks and their cryptographic implications, which is a prerequisite obligation to design cryptographic systems resistant to current and futuristic projected quantum and conventional attacks. In this context, this paper reviews the prevalent quantum concepts and analyses their envisaged impact on various aspects of modern-day communication and information security technologies. Moreover, the paper also presents six open-problems and two conjectures, which are formulated to define prerequisite technological obligations for fully comprehending the futuristic quantum threats to contemporary communication security technologies and information assets processed through these systems. Furthermore, the paper also presents some important concepts in the form of questions and discusses some recent trends adapted in cryptographic designs to thwart quantum attacks.
Ahmad, Syed Farhan, Ferjani, Mohamed Yassine, Kasliwal, Keshav.  2021.  Enhancing Security in the Industrial IoT Sector using Quantum Computing. 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS). :1—5.
The development of edge computing and machine learning technologies have led to the growth of Industrial IoT systems. Autonomous decision making and smart manufacturing are flourishing in the current age of Industry 4.0. By providing more compute power to edge devices and connecting them to the internet, the so-called Cyber Physical Systems are prone to security threats like never before. Security in the current industry is based on cryptographic techniques that use pseudorandom number keys. Keys generated by a pseudo-random number generator pose a security threat as they can be predicted by a malicious third party. In this work, we propose a secure Industrial IoT Architecture that makes use of true random numbers generated by a quantum random number generator (QRNG). CITRIOT's FireConnect IoT node is used to show the proof of concept in a quantum-safe network where the random keys are generated by a cloud based quantum device. We provide an implementation of QRNG on both real quantum computer and quantum simulator. Then, we compare the results with pseudorandom numbers generated by a classical computer.