Biblio
Cybersecurity has become an emerging challenge for business information management and critical infrastructure protection in recent years. Artificial Intelligence (AI) has been widely used in different fields, but it is still relatively new in the area of Cyber-Physical Systems (CPS) security. In this paper, we provide an approach based on Machine Learning (ML) to intelligent threat recognition to enable run-time risk assessment for superior situation awareness in CPS security monitoring. With the aim of classifying malicious activity, several machine learning methods, such as k-nearest neighbours (kNN), Naïve Bayes (NB), Support Vector Machine (SVM), Decision Tree (DT) and Random Forest (RF), have been applied and compared using two different publicly available real-world testbeds. The results show that RF allowed for the best classification performance. When used in reference industrial applications, the approach allows security control room operators to get notified of threats only when classification confidence will be above a threshold, hence reducing the stress of security managers and effectively supporting their decisions.
In new technological world pervasive computing plays the important role in data computing and communication. The pervasive computing provides the mobile environment for decentralized computational services at anywhere, anytime at any context and location. Pervasive computing is flexible and makes portable devices and computing surrounded us as part of our daily life. Devices like Laptop, Smartphones, PDAs, and any other portable devices can constitute the pervasive environment. These devices in pervasive environments are worldwide and can receive various communications including audio visual services. The users and the system in this pervasive environment face the challenges of user trust, data privacy and user and device node identity. To give the feasible determination for these challenges. This paper aims to propose a dynamic learning in pervasive computing environment refer the challenges proposed efficient security model (ESM) for trustworthy and untrustworthy attackers. ESM model also compared with existing generic models; it also provides better accuracy rate than existing models.
Recently, federated learning (FL), as an advanced and practical solution, has been applied to deal with privacy-preserving issues in distributed multi-party federated modeling. However, most existing FL methods focus on the same privacy-preserving budget while ignoring various privacy requirements of participants. In this paper, we for the first time propose an algorithm (PLU-FedOA) to optimize the deep neural network of horizontal FL with personalized local differential privacy. For such considerations, we design two approaches: PLU, which allows clients to upload local updates under differential privacy-preserving of personally selected privacy level, and FedOA, which helps the server aggregates local parameters with optimized weight in mixed privacy-preserving scenarios. Moreover, we theoretically analyze the effect on privacy and optimization of our approaches. Finally, we verify PLU-FedOA on real-world datasets.
With big data and artificial intelligence, we conduct the research of the buyers' identification and involvement, and their investments such as time, experience and consultation in various channels are analyzed and iterated. We establish a set of AI channel governance system with the functions of members' behavior monitoring, transaction clearing and deterrence; Through the system, the horizontal spillover effect of their behavior is controlled. Thus, their unfair perception can be effectively reduced and the channel performance can be improved as well.