Visible to the public Biblio

Found 1515 results

Filters: First Letter Of Title is S  [Clear All Filters]
2021
Lit, Yanyan, Kim, Sara, Sy, Eric.  2021.  A Survey on Amazon Alexa Attack Surfaces. 2021 IEEE 18th Annual Consumer Communications Networking Conference (CCNC). :1–7.
Since being launched in 2014, Alexa, Amazon's versatile cloud-based voice service, is now active in over 100 million households worldwide [1]. Alexa's user-friendly, personalized vocal experience offers customers a more natural way of interacting with cutting-edge technology by allowing the ability to directly dictate commands to the assistant. Now in the present year, the Alexa service is more accessible than ever, available on hundreds of millions of devices from not only Amazon but third-party device manufacturers. Unfortunately, that success has also been the source of concern and controversy. The success of Alexa is based on its effortless usability, but in turn, that has led to a lack of sufficient security. This paper surveys various attacks against Amazon Alexa ecosystem including attacks against the frontend voice capturing and the cloud backend voice command recognition and processing. Overall, we have identified six attack surfaces covering the lifecycle of Alexa voice interaction that spans several stages including voice data collection, transmission, processing and storage. We also discuss the potential mitigation solutions for each attack surface to better improve Alexa or other voice assistants in terms of security and privacy.
2020
Anithaashri, T. P., Ravichandran, G..  2020.  Security Enhancement for the Network Amalgamation using Machine Learning Algorithm. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :411—416.

Accessing the secured data through the network is a major task in emerging technology. Data needs to be protected from the network vulnerabilities, malicious users, hackers, sniffers, intruders. The novel framework has been designed to provide high security in data transaction through computer network. The implant of network amalgamation in the recent trends, make the way in security enhancement in an efficient manner through the machine learning algorithm. In this system the usage of the biometric authenticity plays a vital role for unique approach. The novel mathematical approach is used in machine learning algorithms to solve these problems and provide the security enhancement. The result shows that the novel method has consistent improvement in enhancing the security of data transactions in the emerging technologies.

Drašar, M., Moskal, S., Yang, S., Zat'ko, P..  2020.  Session-level Adversary Intent-Driven Cyberattack Simulator. 2020 IEEE/ACM 24th International Symposium on Distributed Simulation and Real Time Applications (DS-RT). :1—9.

Recognizing the need for proactive analysis of cyber adversary behavior, this paper presents a new event-driven simulation model and implementation to reveal the efforts needed by attackers who have various entry points into a network. Unlike previous models which focus on the impact of attackers' actions on the defender's infrastructure, this work focuses on the attackers' strategies and actions. By operating on a request-response session level, our model provides an abstraction of how the network infrastructure reacts to access credentials the adversary might have obtained through a variety of strategies. We present the current capabilities of the simulator by showing three variants of Bronze Butler APT on a network with different user access levels.

Olejnik, Lukasz.  2020.  Shedding light on web privacy impact assessment: A case study of the Ambient Light Sensor API. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :310—313.

As modern web browsers gain new and increasingly powerful features the importance of impact assessments of the new functionality becomes crucial. A web privacy impact assessment of a planned web browser feature, the Ambient Light Sensor API, indicated risks arising from the exposure of overly precise information about the lighting conditions in the user environment. The analysis led to the demonstration of direct risks of leaks of user data, such as the list of visited websites or exfiltration of sensitive content across distinct browser contexts. Our work contributed to the creation of web standards leading to decisions by browser vendors (i.e. obsolescence, non-implementation or modification to the operation of browser features). We highlight the need to consider broad risks when making reviews of new features. We offer practically-driven high-level observations lying on the intersection of web security and privacy risk engineering and modeling, and standardization. We structure our work as a case study from activities spanning over three years.

Pete, I., Hughes, J., Chua, Y. T., Bada, M..  2020.  A Social Network Analysis and Comparison of Six Dark Web Forums. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :484—493.

With increasing monitoring and regulation by platforms, communities with criminal interests are moving to the dark web, which hosts content ranging from whistle-blowing and privacy, to drugs, terrorism, and hacking. Using post discussion data from six dark web forums we construct six interaction graphs and use social network analysis tools to study these underground communities. We observe the structure of each network to highlight structural patterns and identify nodes of importance through network centrality analysis. Our findings suggest that in the majority of the forums some members are highly connected and form hubs, while most members have a lower number of connections. When examining the posting activities of central nodes we found that most of the central nodes post in sub-forums with broader topics, such as general discussions and tutorials. These members play different roles in the different forums, and within each forum we identified diverse user profiles.

Lin, P., Jinshuang, W., Ping, C., Lanjuan, Y..  2020.  SQL Injection Attack and Detection Based on GreenSQL Pattern Input Whitelist. 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE). :187—190.

With the rapid development of Internet technology, the era of big data is coming. SQL injection attack is the most common and the most dangerous threat to database. This paper studies the working mode and workflow of the GreenSQL database firewall. Based on the analysis of the characteristics and patterns of SQL injection attack command, the input model of GreenSQL learning is optimized by constructing the patterned input and optimized whitelist. The research method can improve the learning efficiency of GreenSQL and intercept samples in IPS mode, so as to effectively maintain the security of background database.

Marichamy, V. S., Natarajan, V..  2020.  A Study of Big Data Security on a Partitional Clustering Algorithm with Perturbation Technique. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :482—486.

Partitional Clustering Algorithm (PCA) on the Hadoop Distributed File System is to perform big data securities using the Perturbation Technique is the main idea of the proposed work. There are numerous clustering methods available that are used to categorize the information from the big data. PCA discovers the cluster based on the initial partition of the data. In this approach, it is possible to develop a security safeguarding of data that is impoverished to allow the calculations and communication. The performances were analyzed on Health Care database under the studies of various parameters like precision, accuracy, and F-score measure. The outcome of the results is to demonstrate that this method is used to decrease the complication in preserving privacy and better accuracy than that of the existing techniques.

Nace, L..  2020.  Securing Trajectory based Operations Through a Zero Trust Framework in the NAS. 2020 Integrated Communications Navigation and Surveillance Conference (ICNS). :1B1–1–1B1—8.
Current FAA strategic objectives include a migration to Trajectory Based Operations (TBO) with the integration of time-based management data and tools to increase efficiencies and reduce operating costs within the National Airspace System (NAS). Under TBO, integration across various FAA systems will take on greater importance than ever. To ensure the security of this integration without impacting data and tool availability, the FAA should consider adopting a Zero Trust Framework (ZTF) into the NAS.ZTF was founded on the belief that strong boundary security protections alone (traditionally referred to as the castle-moat approach) were no longer adequate to protecting critical data from outside threats and, with ever-evolving threat sophistication, contamination within a network perimeter is assumed to already exist (see Figure 1).To address this, theorists developed a framework where trust is controlled and applied to all internal network devices, users, and applications in what was termed a "Never Trust; Always Verify" approach to distinguish the authorized from the unauthorized elements wanting to access network data.To secure achievement of TBO objectives and add defensive depth to counter potential insider threats, the FAA must consider implementing a hybrid approach to the ZTF theory. This would include continued use of existing boundary protections provided by the FAA Telecommunications Infrastructure (FTI) network, with the additional strength afforded by the application of ZTF, in what is called the NAS Zero Trust eXtended (ZTX) platform.This paper discusses a proposal to implement a hybrid ZTX approach to securing TBO infrastructure and applications in the NAS.
Piessens, F..  2020.  Security across abstraction layers: old and new examples. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :271–279.
A common technique for building ICT systems is to build them as successive layers of bstraction: for instance, the Instruction Set Architecture (ISA) is an abstraction of the hardware, and compilers or interpreters build higher level abstractions on top of the ISA.The functionality of an ICT application can often be understood by considering only a single level of abstraction. For instance the source code of the application defines the functionality using the level of abstraction of the source programming language. Functionality can be well understood by just studying this source code.Many important security issues in ICT system however are cross-layer issues: they can not be understood by considering the system at a single level of abstraction, but they require understanding how multiple levels of abstraction are implemented. Attacks may rely on, or exploit, implementation details of one or more layers below the source code level of abstraction.The purpose of this paper is to illustrate this cross-layer nature of security by discussing old and new examples of cross-layer security issues, and by providing a classification of these issues.
Ng, M., Coopamootoo, K. P. L., Toreini, E., Aitken, M., Elliot, K., Moorsel, A. van.  2020.  Simulating the Effects of Social Presence on Trust, Privacy Concerns Usage Intentions in Automated Bots for Finance. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :190–199.
FinBots are chatbots built on automated decision technology, aimed to facilitate accessible banking and to support customers in making financial decisions. Chatbots are increasing in prevalence, sometimes even equipped to mimic human social rules, expectations and norms, decreasing the necessity for human-to-human interaction. As banks and financial advisory platforms move towards creating bots that enhance the current state of consumer trust and adoption rates, we investigated the effects of chatbot vignettes with and without socio-emotional features on intention to use the chatbot for financial support purposes. We conducted a between-subject online experiment with N = 410 participants. Participants in the control group were provided with a vignette describing a secure and reliable chatbot called XRO23, whereas participants in the experimental group were presented with a vignette describing a secure and reliable chatbot that is more human-like and named Emma. We found that Vignette Emma did not increase participants' trust levels nor lowered their privacy concerns even though it increased perception of social presence. However, we found that intention to use the presented chatbot for financial support was positively influenced by perceived humanness and trust in the bot. Participants were also more willing to share financially-sensitive information such as account number, sort code and payments information to XRO23 compared to Emma - revealing a preference for a technical and mechanical FinBot in information sharing. Overall, this research contributes to our understanding of the intention to use chatbots with different features as financial technology, in particular that socio-emotional support may not be favoured when designed independently of financial function.
Muñoz, C. M. Blanco, Cruz, F. Gómez, Valero, J. S. Jimenez.  2020.  Software architecture for the application of facial recognition techniques through IoT devices. 2020 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI). :1–5.

The facial recognition time by time takes more importance, due to the extend kind of applications it has, but it is still challenging when faces big variations in the characteristics of the biometric data used in the process and especially referring to the transportation of information through the internet in the internet of things context. Based on the systematic review and rigorous study that supports the extraction of the most relevant information on this topic [1], a software architecture proposal which contains basic security requirements necessary for the treatment of the data involved in the application of facial recognition techniques, oriented to an IoT environment was generated. Concluding that the security and privacy considerations of the information registered in IoT devices represent a challenge and it is a priority to be able to guarantee that the data circulating on the network are only accessible to the user that was designed for this.

Ulrich, Jacob, McJunkin, Timothy, Rieger, Craig, Runyon, Michael.  2020.  Scalable, Physical Effects Measurable Microgrid for Cyber Resilience Analysis (SPEMMCRA). 2020 Resilience Week (RWS). :194—201.

The ability to advance the state of the art in automated cybersecurity protections for industrial control systems (ICS) has as a prerequisite of understanding the trade-off space. That is, to enable a cyber feedback loop in a control system environment you must first consider both the security mitigation available, the benefits and the impacts to the control system functionality when the mitigation is used. More damaging impacts could be precipitated that the mitigation was intended to rectify. This paper details networked ICS that controls a simulation of the frequency response represented with the swing equation. The microgrid loads and base generation can be balanced through the control of an emulated battery and power inverter. The simulated plant, which is implemented in Raspberry Pi computers, provides an inexpensive platform to realize the physical effects of cyber attacks to show the trade-offs of available mitigating actions. This network design can include a commercial ICS controller and simple plant or emulated plant to introduce real world implementation of feedback controls, and provides a scalable, physical effects measurable microgrid for cyber resilience analysis (SPEMMCRA).

Feng, Liu, Jie, Yang, Deli, Kong, Jiayin, Qi.  2020.  A Secure Multi-party Computation Protocol Combines Pederson Commitment with Schnorr Signature for Blockchain. 2020 IEEE 20th International Conference on Communication Technology (ICCT). :57—63.

Blockchain is being pursued by a growing number of people with its characteristics of openness, transparency, and decentralization. At the same time, how to secure privacy protection in such an open and transparent ledger is an urgent issue to be solved for deep study. Therefore, this paper proposes a protocol based on Secure multi-party computation, which can merge and sign different transaction messages under the anonymous condition by using Pedersen commitment and Schnorr Signature. Through the rationality proof and security analysis, this paper demonstrates the private transaction is safe under the semi-honest model. And its computational cost is less than the equivalent multi-signature model. The research has made some innovative contributions to the privacy computing theory.

Altarawneh, A., Skjellum, A..  2020.  The Security Ingredients for Correct and Byzantine Fault-tolerant Blockchain Consensus Algorithms. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1—9.

The blockchain technology revolution and the use of blockchains in various applications have resulted in many companies and programmers developing and customizing specific fit-for-purpose consensus algorithms. Security and performance are determined by the chosen consensus algorithm; hence, the reliability and security of these algorithms must be assured and tested, which requires an understanding of all the security assumptions that make such algorithms correct and byzantine fault-tolerant.This paper studies the "security ingredients" that enable a given consensus algorithm to achieve safety, liveness, and byzantine fault tolerance (BFT) in both permissioned and permissionless blockchain systems. The key contributions of this paper are the organization of these requirements and a new taxonomy that describes the requirements for security. The CAP Theorem is utilized to explain important tradeoffs between consistency and availability in consensus algorithm design, which are crucial depending on the specific application of a given algorithm. This topic has also been explored previously by De Angelis. However, this paper expands that prior explanation and dilemma of consistency vs. availability and then combines this with Buterin's Trilemma to complete the overall exposition of tradeoffs.

Belim, S. V., Belim, S. Y..  2020.  The Security Policies Optimization Problem for Composite Information Systems. 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). :1—4.

The problem of optimizing the security policy for the composite information system is formulated. Subject-object model for information system is used. Combining different types of security policies is formalized. The target function for the optimization task is recorded. The optimization problem for combining two discretionary security policies is solved. The case of combining two mandatory security policies is studied. The main problems of optimization the composite security policy are formulated. +50 CHMBOJIOB‼!

Kuchar, K., Fujdiak, R., Blazek, P., Martinasek, Z., Holasova, E..  2020.  Simplified Method for Fast and Efficient Incident Detection in Industrial Networks. 2020 4th Cyber Security in Networking Conference (CSNet). :1—3.

This article is focused on industrial networks and their security. An industrial network typically works with older devices that do not provide security at the level of today's requirements. Even protocols often do not support security at a sufficient level. It is necessary to deal with these security issues due to digitization. It is therefore required to provide other techniques that will help with security. For this reason, it is possible to deploy additional elements that will provide additional security and ensure the monitoring of the network, such as the Intrusion Detection System. These systems recognize identified signatures and anomalies. Methods of detecting security incidents by detecting anomalies in network traffic are described. The proposed methods are focused on detecting DoS attacks in the industrial Modbus protocol and operations performed outside the standard interval in the Distributed Network Protocol 3. The functionality of the performed methods is tested in the IDS system Zeek.

Mladenova, T..  2020.  Software Quality Metrics – Research, Analysis and Recommendation. 2020 International Conference Automatics and Informatics (ICAI). :1—5.

Software Quality Testing has always been a crucial part of the software development process and lately, there has been a rise in the usage of testing applications. While a well-planned and performed test, regardless of its nature - automated or manual, is a key factor when deciding on the results of the test, it is often not enough to give a more deep and thorough view of the whole process. That can be achieved with properly selected software metrics that can be used for proper risk assessment and evaluation of the development.This paper considers the most commonly used metrics when measuring a performed test and examines metrics that can be applied in the development process.

Baolin, X., Minhuan, Z..  2020.  A Solution of Text Based CAPTCHA without Network Flow Consumption. 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS). :395—399.

With the widespread application of distributed information processing, information processing security issues have become one of the important research topics; CAPTCHA technology is often used as the first security barrier for distributed information processing and it prevents the client malicious programs to attack the server. The experiment proves that the existing “request / response” mode of CAPTCHA has great security risks. “The text-based CAPTCHA solution without network flow consumption” proposed in this paper avoids the “request / response” mode and the verification logic of the text-based CAPTCHA is migrated to the client in this solution, which fundamentally cuts off the client's attack facing to the server during the verification of the CAPTCHA and it is a high-security text-based CAPTCHA solution without network flow consumption.

Sadu, A., Stevic, M., Wirtz, N., Monti, A..  2020.  A Stochastic Assessment of Attacks based on Continuous-Time Markov Chains. 2020 6th IEEE International Energy Conference (ENERGYCon). :11—16.

With the increasing interdependence of critical infrastructures, the probability of a specific infrastructure to experience a complex cyber-physical attack is increasing. Thus it is important to analyze the risk of an attack and the dynamics of its propagation in order to design and deploy appropriate countermeasures. The attack trees, commonly adopted to this aim, have inherent shortcomings in representing interdependent, concurrent and sequential attacks. To overcome this, the work presented here proposes a stochastic methodology using Petri Nets and Continuous Time Markov Chain (CTMC) to analyze the attacks, considering the individual attack occurrence probabilities and their stochastic propagation times. A procedure to convert a basic attack tree into an equivalent CTMC is presented. The proposed method is applied in a case study to calculate the different attack propagation characteristics. The characteristics are namely, the probability of reaching the root node & sub attack nodes, the mean time to reach the root node and the mean time spent in the sub attack nodes before reaching the root node. Additionally, the method quantifies the effectiveness of specific defenses in reducing the attack risk considering the efficiency of individual defenses.

Bychkov, Igor, Feoktistov, Alexander, Gorsky, Sergey, Edelev, Alexei, Sidorov, Ivan, Kostromin, Roman, Fereferov, Evgeniy, Fedorov, Roman.  2020.  Supercomputer Engineering for Supporting Decision-making on Energy Systems Resilience. 2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT). :1—6.
We propose a new approach to creating a subject-oriented distributed computing environment. Such an environment is used to support decision-making in solving relevant problems of ensuring energy systems resilience. The proposed approach is based on the idea of advancing and integrating the following important capabilities in supercomputer engineering: continuous integration, delivery, and deployment of the system and applied software, high-performance computing in heterogeneous environments, multi-agent intelligent computation planning and resource allocation, big data processing and geo-information servicing for subject information, including weakly structured data, and decision-making support. This combination of capabilities and their advancing are unique to the subject domain under consideration, which is related to combinatorial studying critical objects of energy systems. Evaluation of decision-making alternatives is carrying out through applying combinatorial modeling and multi-criteria selection rules. The Orlando Tools framework is used as the basis for an integrated software environment. It implements a flexible modular approach to the development of scientific applications (distributed applied software packages).
Shekhawat, G. K., Yadav, R. P..  2020.  Sparse Code Multiple Access based Cooperative Spectrum Sensing in 5G Cognitive Radio Networks. 2020 5th International Conference on Computing, Communication and Security (ICCCS). :1–6.
Fifth-generation (5G) network demands of higher data rate, massive user connectivity and large spectrum can be achieve using Sparse Code Multiple Access (SCMA) scheme. The integration of cognitive feature spectrum sensing with SCMA can enhance the spectrum efficiency in a heavily dense 5G wireless network. In this paper, we have investigated the primary user detection performance using SCMA in Centralized Cooperative Spectrum Sensing (CCSS). The developed model can support massive user connectivity, lower latency and higher spectrum utilization for future 5G networks. The simulation study is performed for AWGN and Rayleigh fading channel. Log-MPA iterative receiver based Log-Likelihood Ratio (LLR) soft test statistic is passed to Fusion Center (FC). The Wald-hypothesis test is used at FC to finalize the PU decision.
Boas, Y. d S. V., Rocha, D. S., Barros, C. E. de, Martina, J. E..  2020.  SRVB cryptosystem: another attempt to revive Knapsack-based public-key encryption schemes. 2020 27th International Conference on Telecommunications (ICT). :1–6.
Public-key cryptography is a ubiquitous buildingblock of modern telecommunication technology. Among the most historically important, the knapsack-based encryption schemes, from the early years of public-key cryptography, performed particularly well in computational resources (time and memory), and mathematical and algorithmic simplicity. Although effective cryptanalyses readily curtailed their widespread adoption to several different attempts, the possibility of actual usage of knapsack-based asymmetric encryption schemes remains unsettled. This paper aims to present a novel construction that offers consistent security improvements on knapsack-based cryptography. We propose two improvements upon the original knapsack cryptosystem that address the most important types of attacks: the Diophantine approximationsbased attacks and the lattice problems oracle attacks. The proposed defences demonstrably preclude the types of attacks mentioned above, thus contributing to revive knapsack schemes or settle the matter negatively. Finally, we present the http://t3infosecurity.com/nepsecNep.Sec, a contest that is offering a prize for breaking our proposed cryptosystem.
Luo, Yukui, Gongye, Cheng, Ren, Shaolei, Fei, Yunsi, Xu, Xiaolin.  2020.  Stealthy-Shutdown: Practical Remote Power Attacks in Multi - Tenant FPGAs. 2020 IEEE 38th International Conference on Computer Design (ICCD). :545–552.
With the deployment of artificial intelligent (AI) algorithms in a large variety of applications, there creates an increasing need for high-performance computing capabilities. As a result, different hardware platforms have been utilized for acceleration purposes. Among these hardware-based accelerators, the field-programmable gate arrays (FPGAs) have gained a lot of attention due to their re-programmable characteristics, which provide customized control logic and computing operators. For example, FPGAs have recently been adopted for on-demand cloud services by the leading cloud providers like Amazon and Microsoft, providing acceleration for various compute-intensive tasks. While the co-residency of multiple tenants on a cloud FPGA chip increases the efficiency of resource utilization, it also creates unique attack surfaces that are under-explored. In this paper, we exploit the vulnerability associated with the shared power distribution network on cloud FPGAs. We present a stealthy power attack that can be remotely launched by a malicious tenant, shutting down the entire chip and resulting in denial-of-service for other co-located benign tenants. Specifically, we propose stealthy-shutdown: a well-timed power attack that can be implemented in two steps: (1) an attacker monitors the realtime FPGA power-consumption detected by ring-oscillator-based voltage sensors, and (2) when capturing high power-consuming moments, i.e., the power consumption by other tenants is above a certain threshold, she/he injects a well-timed power load to shut down the FPGA system. Note that in the proposed attack strategy, the power load injected by the attacker only accounts for a small portion of the overall power consumption; therefore, such attack strategy remains stealthy to the cloud FPGA operator. We successfully implement and validate the proposed attack on three FPGA evaluation kits with running real-world applications. The proposed attack results in a stealthy-shutdown, demonstrating severe security concerns of co-tenancy on cloud FPGAs. We also offer two countermeasures that can mitigate such power attacks.
Tekinerdoğan, B., Özcan, K., Yağız, S., Yakın, İ.  2020.  Systems Engineering Architecture Framework for Physical Protection Systems. 2020 IEEE International Symposium on Systems Engineering (ISSE). :1–8.
A physical protection system (PPS) integrates people, procedures, and equipment for the protection of assets or facilities against theft, sabotage, or other malevolent intruder attacks. In this paper we focus on the architecture modeling of PPS to support the communication among stakeholders, analysis and guiding the systems development activities. A common practice for modeling architecture is by using an architecture framework that defines a coherent set of viewpoints. Existing systems engineering modeling approaches appear to be too general and fail to address the domain-specific aspects of PPSs. On the other hand, no dedicated architecture framework approach has been provided yet to address the specific concerns of PPS. In this paper, we present an architecture framework for PPS (PPSAF) that has been developed in a real industrial context focusing on the development of multiple PPSs. The architecture framework consists of six coherent set of viewpoints including facility viewpoint, threats and vulnerabilities viewpoint, deterrence viewpoint, detection viewpoint, delay viewpoint, and response viewpoint. We illustrate the application of the architecture framework for the design of a PPS architecture of a building.
Konwar, Kishori M., Kumar, Saptaparni, Tseng, Lewis.  2020.  Semi-Fast Byzantine-tolerant Shared Register without Reliable Broadcast. 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS). :743—753.
Shared register emulations on top of message-passing systems provide an illusion of a simpler shared memory system which can make the task of a system designer easier. Numerous shared register applications have a considerably high read-to-write ratio. Thus, having algorithms that make reads more efficient than writes is a fair trade-off.Typically, such algorithms for reads and writes are asymmetric and sacrifice the stringent consistency condition atomicity, as it is impossible to have fast reads for multi-writer atomicity. Safety is a consistency condition that has has gathered interest from both the systems and theory community as it is weaker than atomicity yet provides strong enough guarantees like "strong consistency" or read-my-write consistency. One requirement that is assumed by many researchers is that of the reliable broadcast (RB) primitive, which ensures the "all or none" property during a broadcast. One drawback is that such a primitive takes 1.5 rounds to complete and requires server-to-server communication.This paper implements an efficient multi-writer multi-reader safe register without using a reliable broadcast primitive. Moreover, we provide fast reads or one-shot reads – our read operations can be completed in one round of client-to-server communication. Of course, this comes with the price of requiring more servers when compared to prior solutions assuming reliable broadcast. However, we show that this increased number of servers is indeed necessary as we prove a tight bound on the number of servers required to implement Byzantine-fault tolerant safe registers in a system without reliable broadcast.We extend our results to data stored using erasure coding as well. We present an emulation of single-writer multi-reader safe register based on MDS codes. The usage of MDS codes reduces storage and communication costs. On the negative side, we also show that to use MDS codes and at the same time achieve one-shot reads, we need even more servers.