Visible to the public Biblio

Found 12055 results

2014-09-26
Yajin Zhou, Xuxian Jiang.  2012.  Dissecting Android Malware: Characterization and Evolution. Security and Privacy (SP), 2012 IEEE Symposium on. :95-109.

The popularity and adoption of smart phones has greatly stimulated the spread of mobile malware, especially on the popular platforms such as Android. In light of their rapid growth, there is a pressing need to develop effective solutions. However, our defense capability is largely constrained by the limited understanding of these emerging mobile malware and the lack of timely access to related samples. In this paper, we focus on the Android platform and aim to systematize or characterize existing Android malware. Particularly, with more than one year effort, we have managed to collect more than 1,200 malware samples that cover the majority of existing Android malware families, ranging from their debut in August 2010 to recent ones in October 2011. In addition, we systematically characterize them from various aspects, including their installation methods, activation mechanisms as well as the nature of carried malicious payloads. The characterization and a subsequent evolution-based study of representative families reveal that they are evolving rapidly to circumvent the detection from existing mobile anti-virus software. Based on the evaluation with four representative mobile security software, our experiments show that the best case detects 79.6% of them while the worst case detects only 20.2% in our dataset. These results clearly call for the need to better develop next-generation anti-mobile-malware solutions.

Howe, AE., Ray, I, Roberts, M., Urbanska, M., Byrne, Z..  2012.  The Psychology of Security for the Home Computer User. Security and Privacy (SP), 2012 IEEE Symposium on. :209-223.

The home computer user is often said to be the weakest link in computer security. They do not always follow security advice, and they take actions, as in phishing, that compromise themselves. In general, we do not understand why users do not always behave safely, which would seem to be in their best interest. This paper reviews the literature of surveys and studies of factors that influence security decisions for home computer users. We organize the review in four sections: understanding of threats, perceptions of risky behavior, efforts to avoid security breaches and attitudes to security interventions. We find that these studies reveal a lot of reasons why current security measures may not match the needs or abilities of home computer users and suggest future work needed to inform how security is delivered to this user group.

Dyer, K.P., Coull, S.E., Ristenpart, T., Shrimpton, T..  2012.  Peek-a-Boo, I Still See You: Why Efficient Traffic Analysis Countermeasures Fail. Security and Privacy (SP), 2012 IEEE Symposium on. :332-346.

We consider the setting of HTTP traffic over encrypted tunnels, as used to conceal the identity of websites visited by a user. It is well known that traffic analysis (TA) attacks can accurately identify the website a user visits despite the use of encryption, and previous work has looked at specific attack/countermeasure pairings. We provide the first comprehensive analysis of general-purpose TA countermeasures. We show that nine known countermeasures are vulnerable to simple attacks that exploit coarse features of traffic (e.g., total time and bandwidth). The considered countermeasures include ones like those standardized by TLS, SSH, and IPsec, and even more complex ones like the traffic morphing scheme of Wright et al. As just one of our results, we show that despite the use of traffic morphing, one can use only total upstream and downstream bandwidth to identify – with 98% accuracy - which of two websites was visited. One implication of what we find is that, in the context of website identification, it is unlikely that bandwidth-efficient, general-purpose TA countermeasures can ever provide the type of security targeted in prior work.

Mayer, J.R., Mitchell, J.C..  2012.  Third-Party Web Tracking: Policy and Technology. Security and Privacy (SP), 2012 IEEE Symposium on. :413-427.

In the early days of the web, content was designed and hosted by a single person, group, or organization. No longer. Webpages are increasingly composed of content from myriad unrelated "third-party" websites in the business of advertising, analytics, social networking, and more. Third-party services have tremendous value: they support free content and facilitate web innovation. But third-party services come at a privacy cost: researchers, civil society organizations, and policymakers have increasingly called attention to how third parties can track a user's browsing activities across websites. This paper surveys the current policy debate surrounding third-party web tracking and explains the relevant technology. It also presents the FourthParty web measurement platform and studies we have conducted with it. Our aim is to inform researchers with essential background and tools for contributing to public understanding and policy debates about web tracking.

Henry, R., Goldberg, I.  2011.  Formalizing Anonymous Blacklisting Systems. Security and Privacy (SP), 2011 IEEE Symposium on. :81-95.

Anonymous communications networks, such as Tor, help to solve the real and important problem of enabling users to communicate privately over the Internet. However, in doing so, anonymous communications networks introduce an entirely new problem for the service providers - such as websites, IRC networks or mail servers - with which these users interact, in particular, since all anonymous users look alike, there is no way for the service providers to hold individual misbehaving anonymous users accountable for their actions. Recent research efforts have focused on using anonymous blacklisting systems (which are sometimes called anonymous revocation systems) to empower service providers with the ability to revoke access from abusive anonymous users. In contrast to revocable anonymity systems, which enable some trusted third party to deanonymize users, anonymous blacklisting systems provide users with a way to authenticate anonymously with a service provider, while enabling the service provider to revoke access from any users that misbehave, without revealing their identities. In this paper, we introduce the anonymous blacklisting problem and survey the literature on anonymous blacklisting systems, comparing and contrasting the architecture of various existing schemes, and discussing the tradeoffs inherent with each design. The literature on anonymous blacklisting systems lacks a unified set of definitions, each scheme operates under different trust assumptions and provides different security and privacy guarantees. Therefore, before we discuss the existing approaches in detail, we first propose a formal definition for anonymous blacklisting systems, and a set of security and privacy properties that these systems should possess. We also outline a set of new performance requirements that anonymous blacklisting systems should satisfy to maximize their potential for real-world adoption, and give formal definitions for several optional features already supported by some sche- - mes in the literature.

Becher, M., Freiling, F.C., Hoffmann, J., Holz, T., Uellenbeck, S., Wolf, C..  2011.  Mobile Security Catching Up? Revealing the Nuts and Bolts of the Security of Mobile Devices Security and Privacy (SP), 2011 IEEE Symposium on. :96-111.

We are currently moving from the Internet society to a mobile society where more and more access to information is done by previously dumb phones. For example, the number of mobile phones using a full blown OS has risen to nearly 200% from Q3/2009 to Q3/2010. As a result, mobile security is no longer immanent, but imperative. This survey paper provides a concise overview of mobile network security, attack vectors using the back end system and the web browser, but also the hardware layer and the user as attack enabler. We show differences and similarities between "normal" security and mobile security, and draw conclusions for further research opportunities in this area.

Armknecht, F., Maes, R., Sadeghi, A, Standaert, O.-X., Wachsmann, C..  2011.  A Formalization of the Security Features of Physical Functions. Security and Privacy (SP), 2011 IEEE Symposium on. :397-412.

Physical attacks against cryptographic devices typically take advantage of information leakage (e.g., side-channels attacks) or erroneous computations (e.g., fault injection attacks). Preventing or detecting these attacks has become a challenging task in modern cryptographic research. In this context intrinsic physical properties of integrated circuits, such as Physical(ly) Unclonable Functions (PUFs), can be used to complement classical cryptographic constructions, and to enhance the security of cryptographic devices. PUFs have recently been proposed for various applications, including anti-counterfeiting schemes, key generation algorithms, and in the design of block ciphers. However, currently only rudimentary security models for PUFs exist, limiting the confidence in the security claims of PUF-based security primitives. A useful model should at the same time (i) define the security properties of PUFs abstractly and naturally, allowing to design and formally analyze PUF-based security solutions, and (ii) provide practical quantification tools allowing engineers to evaluate PUF instantiations. In this paper, we present a formal foundation for security primitives based on PUFs. Our approach requires as little as possible from the physics and focuses more on the main properties at the heart of most published works on PUFs: robustness (generation of stable answers), unclonability (not provided by algorithmic solutions), and unpredictability. We first formally define these properties and then show that they can be achieved by previously introduced PUF instantiations. We stress that such a consolidating work allows for a meaningful security analysis of security primitives taking advantage of physical properties, becoming increasingly important in the development of the next generation secure information systems.

Kashyap, V., Wiedermann, B., Hardekopf, B..  2011.  Timing- and Termination-Sensitive Secure Information Flow: Exploring a New Approach. Security and Privacy (SP), 2011 IEEE Symposium on. :413-428.

Secure information flow guarantees the secrecy and integrity of data, preventing an attacker from learning secret information (secrecy) or injecting untrusted information (integrity). Covert channels can be used to subvert these security guarantees, for example, timing and termination channels can, either intentionally or inadvertently, violate these guarantees by modifying the timing or termination behavior of a program based on secret or untrusted data. Attacks using these covert channels have been published and are known to work in practiceâ as techniques to prevent non-covert channels are becoming increasingly practical, covert channels are likely to become even more attractive for attackers to exploit. The goal of this paper is to understand the subtleties of timing and termination-sensitive noninterference, explore the space of possible strategies for enforcing noninterference guarantees, and formalize the exact guarantees that these strategies can enforce. As a result of this effort we create a novel strategy that provides stronger security guarantees than existing work, and we clarify claims in existing work about what guarantees can be made.

Sommer, R., Paxson, V..  2010.  Outside the Closed World: On Using Machine Learning for Network Intrusion Detection. Security and Privacy (SP), 2010 IEEE Symposium on. :305-316.

In network intrusion detection research, one popular strategy for finding attacks is monitoring a network's activity for anomalies: deviations from profiles of normality previously learned from benign traffic, typically identified using tools borrowed from the machine learning community. However, despite extensive academic research one finds a striking gap in terms of actual deployments of such systems: compared with other intrusion detection approaches, machine learning is rarely employed in operational "real world" settings. We examine the differences between the network intrusion detection problem and other areas where machine learning regularly finds much more success. Our main claim is that the task of finding attacks is fundamentally different from these other applications, making it significantly harder for the intrusion detection community to employ machine learning effectively. We support this claim by identifying challenges particular to network intrusion detection, and provide a set of guidelines meant to strengthen future research on anomaly detection.

Schwartz, E.J., Avgerinos, T., Brumley, D..  2010.  All You Ever Wanted to Know about Dynamic Taint Analysis and Forward Symbolic Execution (but Might Have Been Afraid to Ask). Security and Privacy (SP), 2010 IEEE Symposium on. :317-331.

Dynamic taint analysis and forward symbolic execution are quickly becoming staple techniques in security analyses. Example applications of dynamic taint analysis and forward symbolic execution include malware analysis, input filter generation, test case generation, and vulnerability discovery. Despite the widespread usage of these two techniques, there has been little effort to formally define the algorithms and summarize the critical issues that arise when these techniques are used in typical security contexts. The contributions of this paper are two-fold. First, we precisely describe the algorithms for dynamic taint analysis and forward symbolic execution as extensions to the run-time semantics of a general language. Second, we highlight important implementation choices, common pitfalls, and considerations when using these techniques in a security context.

Bau, J., Bursztein, E., Gupta, D., Mitchell, J..  2010.  State of the Art: Automated Black-Box Web Application Vulnerability Testing. Security and Privacy (SP), 2010 IEEE Symposium on. :332-345.

Black-box web application vulnerability scanners are automated tools that probe web applications for security vulnerabilities. In order to assess the current state of the art, we obtained access to eight leading tools and carried out a study of: (i) the class of vulnerabilities tested by these scanners, (ii) their effectiveness against target vulnerabilities, and (iii) the relevance of the target vulnerabilities to vulnerabilities found in the wild. To conduct our study we used a custom web application vulnerable to known and projected vulnerabilities, and previous versions of widely used web applications containing known vulnerabilities. Our results show the promise and effectiveness of automated tools, as a group, and also some limitations. In particular, "stored" forms of Cross Site Scripting (XSS) and SQL Injection (SQLI) vulnerabilities are not currently found by many tools. Because our goal is to assess the potential of future research, not to evaluate specific vendors, we do not report comparative data or make any recommendations about purchase of specific tools.

Bursztein, E., Bethard, S., Fabry, C., Mitchell, J.C., Jurafsky, D..  2010.  How Good Are Humans at Solving CAPTCHAs? A Large Scale Evaluation Security and Privacy (SP), 2010 IEEE Symposium on. :399-413.

Captchas are designed to be easy for humans but hard for machines. However, most recent research has focused only on making them hard for machines. In this paper, we present what is to the best of our knowledge the first large scale evaluation of captchas from the human perspective, with the goal of assessing how much friction captchas present to the average user. For the purpose of this study we have asked workers from Amazon’s Mechanical Turk and an underground captchabreaking service to solve more than 318 000 captchas issued from the 21 most popular captcha schemes (13 images schemes and 8 audio scheme). Analysis of the resulting data reveals that captchas are often difficult for humans, with audio captchas being particularly problematic. We also find some demographic trends indicating, for example, that non-native speakers of English are slower in general and less accurate on English-centric captcha schemes. Evidence from a week’s worth of eBay captchas (14,000,000 samples) suggests that the solving accuracies found in our study are close to real-world values, and that improving audio captchas should become a priority, as nearly 1% of all captchas are delivered as audio rather than images. Finally our study also reveals that it is more effective for an attacker to use Mechanical Turk to solve captchas than an underground service.

Parno, B., McCune, J.M., Perrig, A.  2010.  Bootstrapping Trust in Commodity Computers. Security and Privacy (SP), 2010 IEEE Symposium on. :414-429.

Trusting a computer for a security-sensitive task (such as checking email or banking online) requires the user to know something about the computer's state. We examine research on securely capturing a computer's state, and consider the utility of this information both for improving security on the local computer (e.g., to convince the user that her computer is not infected with malware) and for communicating a remote computer's state (e.g., to enable the user to check that a web server will adequately protect her data). Although the recent "Trusted Computing" initiative has drawn both positive and negative attention to this area, we consider the older and broader topic of bootstrapping trust in a computer. We cover issues ranging from the wide collection of secure hardware that can serve as a foundation for trust, to the usability issues that arise when trying to convey computer state information to humans. This approach unifies disparate research efforts and highlights opportunities for additional work that can guide real-world improvements in computer security.

2014-10-01
Vorobeychik, Yevgeniy, Mayo, Jackson R., Armstrong, Robert C., Ruthruff, Joseph R..  2011.  Noncooperatively Optimized Tolerance: Decentralized Strategic Optimization in Complex Systems. Phys. Rev. Lett.. 107:108702.

We introduce noncooperatively optimized tolerance (NOT), a game theoretic generalization of highly optimized tolerance (HOT), which we illustrate in the forest fire framework. As the number of players increases, NOT retains features of HOT, such as robustness and self-dissimilar landscapes, but also develops features of self-organized criticality. The system retains considerable robustness even as it becomes fractured, due in part to emergent cooperation between players, and at the same time exhibits increasing resilience against changes in the environment, giving rise to intermediate regimes where the system is robust to a particular distribution of adverse events, yet not very fragile to changes.

2014-10-22
Alessandro Coglio.  2014.  Pop-Refinement. Archive of Formal Proofs.

Pop-refinement is an approach to stepwise refinement, carried out inside an interactive theorem prover by constructing a monotonically decreasing sequence of predicates over deeply embedded target programs. The sequence starts with a predicate that characterizes the possible implementations, and ends with a predicate that characterizes a unique program in explicit syntactic form. Pop-refinement enables more requirements (e.g. program-level and non-functional) to be captured in the initial specification and preserved through refinement. Security requirements expressed as hyperproperties (i.e. predicates over sets of traces) are always preserved by pop-refinement, unlike the popular notion of refinement as trace set inclusion. Two simple examples in Isabelle/HOL are presented, featuring program-level requirements, non-functional requirements, and hyperproperties.

2014-10-24
Yu, Tingting, Srisa-an, Witawas, Rothermel, Gregg.  2014.  SimRT: An Automated Framework to Support Regression Testing for Data Races. Proceedings of the 36th International Conference on Software Engineering. :48–59.

Concurrent programs are prone to various classes of difficult-to-detect faults, of which data races are particularly prevalent. Prior work has attempted to increase the cost-effectiveness of approaches for testing for data races by employing race detection techniques, but to date, no work has considered cost-effective approaches for re-testing for races as programs evolve. In this paper we present SimRT, an automated regression testing framework for use in detecting races introduced by code modifications. SimRT employs a regression test selection technique, focused on sets of program elements related to race detection, to reduce the number of test cases that must be run on a changed program to detect races that occur due to code modifications, and it employs a test case prioritization technique to improve the rate at which such races are detected. Our empirical study of SimRT reveals that it is more efficient and effective for revealing races than other approaches, and that its constituent test selection and prioritization components each contribute to its performance.

Kothari, Vijay, Blythe, Jim, Smith, Sean, Koppel, Ross.  2014.  Agent-based Modeling of User Circumvention of Security. 1st International Workshop on Agents and CyberSecurity. :5:1–5:4.

Security subsystems are often designed with flawed assumptions arising from system designers' faulty mental models. Designers tend to assume that users behave according to some textbook ideal, and to consider each potential exposure/interface in isolation. However, fieldwork continually shows that even well-intentioned users often depart from this ideal and circumvent controls in order to perform daily work tasks, and that "incorrect" user behaviors can create unexpected links between otherwise "independent" interfaces. When it comes to security features and parameters, designers try to find the choices that optimize security utility–-except these flawed assumptions give rise to an incorrect curve, and lead to choices that actually make security worse, in practice. We propose that improving this situation requires giving designers more accurate models of real user behavior and how it influences aggregate system security. Agent-based modeling can be a fruitful first step here. In this paper, we study a particular instance of this problem, propose user-centric techniques designed to strengthen the security of systems while simultaneously improving the usability of them, and propose further directions of inquiry.

Baras, J.S..  2014.  A fresh look at network science: Interdependent multigraphs models inspired from statistical physics. Communications, Control and Signal Processing (ISCCSP), 2014 6th International Symposium on. :497-500.

We consider several challenging problems in complex networks (communication, control, social, economic, biological, hybrid) as problems in cooperative multi-agent systems. We describe a general model for cooperative multi-agent systems that involves several interacting dynamic multigraphs and identify three fundamental research challenges underlying these systems from a network science perspective. We show that the framework of constrained coalitional network games captures in a fundamental way the basic tradeoff of benefits vs. cost of collaboration, in multi-agent systems, and demonstrate that it can explain network formation and the emergence or not of collaboration. Multi-metric problems in such networks are analyzed via a novel multiple partially ordered semirings approach. We investigate the interrelationship between the collaboration and communication multigraphs in cooperative swarms and the role of the communication topology, among the collaborating agents, in improving the performance of distributed task execution. Expander graphs emerge as efficient communication topologies for collaborative control. We relate these models and approaches to statistical physics.

Mezzour, Ghita, Carley, L. Richard, Carley, Kathleen M..  2014.  Longitudinal analysis of a large corpus of cyber threat descriptions. Journal of Computer Virology and Hacking Techniques. :1-12.

Online cyber threat descriptions are rich, but little research has attempted to systematically analyze these descriptions. In this paper, we process and analyze two of Symantec’s online threat description corpora. The Anti-Virus (AV) corpus contains descriptions of more than 12,400 threats detected by Symantec’s AV, and the Intrusion Prevention System (IPS) corpus contains descriptions of more than 2,700 attacks detected by Symantec’s IPS. In our analysis, we quantify the over time evolution of threat severity and type in the corpora. We also assess the amount of time Symantec takes to release signatures for newly discovered threats. Our analysis indicates that a very small minority of threats in the AV corpus are high-severity, whereas the majority of attacks in the IPS corpus are high-severity. Moreover, we find that the prevalence of different threat types such as worms and viruses in the corpora varies considerably over time. Finally, we find that Symantec prioritizes releasing signatures for fast propagating threats.

Chen, Simin.  2012.  Declarative Access Policies Based on Objects, Relationships, and States. Proceedings of the 3rd Annual Conference on Systems, Programming, and Applications: Software for Humanity. :99–100.
Access policies are hard to express in existing programming languages. However, their accurate expression is a prerequisite for many of today's applications. We propose a new language that uses classes, first-class relationships, and first-class states to express access policies in a more declarative and fine-grained way than existing solutions allow.
Fulton, Nathan.  2012.  Security Through Extensible Type Systems. Proceedings of the 3rd Annual Conference on Systems, Programming, and Applications: Software for Humanity. :107–108.
Researchers interested in security often wish to introduce new primitives into a language. Extensible languages hold promise in such scenarios, but only if the extension mechanism is sufficiently safe and expressive. This paper describes several modifications to an extensible language motivated by end-to-end security concerns.
Aldrich, Jonathan.  2013.  The Power of Interoperability: Why Objects Are Inevitable. Proceedings of the 2013 ACM International Symposium on New Ideas, New Paradigms, and Reflections on Programming & Software. :101–116.
Three years ago in this venue, Cook argued that in their essence, objects are what Reynolds called procedural data structures. His observation raises a natural question: if procedural data structures are the essence of objects, has this contributed to the empirical success of objects, and if so, how? This essay attempts to answer that question. After reviewing Cook's definition, I propose the term service abstractions to capture the essential nature of objects. This terminology emphasizes, following Kay, that objects are not primarily about representing and manipulating data, but are more about providing services in support of higher-level goals. Using examples taken from object-oriented frameworks, I illustrate the unique design leverage that service abstractions provide: the ability to define abstractions that can be extended, and whose extensions are interoperable in a first-class way. The essay argues that the form of interoperable extension supported by service abstractions is essential to modern software: many modern frameworks and ecosystems could not have been built without service abstractions. In this sense, the success of objects was not a coincidence: it was an inevitable consequence of their service abstraction nature.
Omar, Cyrus, Chung, Benjamin, Kurilova, Darya, Potanin, Alex, Aldrich, Jonathan.  2013.  Type-directed, whitespace-delimited parsing for embedded DSLs. Proceedings of the First Workshop on the Globalization of Domain Specific Languages. :8–11.
Domain-specific languages improve ease-of-use, expressiveness and verifiability, but defining and using different DSLs within a single application remains difficult. We introduce an approach for embedded DSLs where 1) whitespace delimits DSL-governed blocks, and 2) the parsing and type checking phases occur in tandem so that the expected type of the block determines which domain-specific parser governs that block. We argue that this approach occupies a sweet spot, providing high expressiveness and ease-of-use while maintaining safe composability. We introduce the design, provide examples and describe an ongoing implementation of this strategy in the Wyvern programming language. We also discuss how a more conventional keyword-directed strategy for parsing of DSLs can arise as a special case of this type-directed strategy.
Nistor, Ligia, Kurilova, Darya, Balzer, Stephanie, Chung, Benjamin, Potanin, Alex, Aldrich, Jonathan.  2013.  Wyvern: A Simple, Typed, and Pure Object-oriented Language. Proceedings of the 5th Workshop on MechAnisms for SPEcialization, Generalization and inHerItance. :9–16.
The simplest and purest practical object-oriented language designs today are seen in dynamically-typed languages, such as Smalltalk and Self. Static types, however, have potential benefits for productivity, security, and reasoning about programs. In this paper, we describe the design of Wyvern, a statically typed, pure object-oriented language that attempts to retain much of the simplicity and expressiveness of these iconic designs. Our goals lead us to combine pure object-oriented and functional abstractions in a simple, typed setting. We present a foundational object-based language that we believe to be as close as one can get to simple typed lambda calculus while keeping object-orientation. We show how this foundational language can be translated to the typed lambda calculus via standard encodings. We then define a simple extension to this language that introduces classes and show that classes are no more than sugar for the foundational object-based language. Our future intention is to demonstrate that modules and other object-oriented features can be added to our language as not more than such syntactical extensions while keeping the object-oriented core as pure as possible. The design of Wyvern closely follows both historical and modern ideas about the essence of object-orientation, suggesting a new way to think about a minimal, practical, typed core language for objects.
Slavin, R., Hui Shen, Jianwei Niu.  2012.  Characterizations and boundaries of security requirements patterns. Requirements Patterns (RePa), 2012 IEEE Second International Workshop on. :48-53.

Very often in the software development life cycle, security is applied too late or important security aspects are overlooked. Although the use of security patterns is gaining popularity, the current state of security requirements patterns is such that there is not much in terms of a defining structure. To address this issue, we are working towards defining the important characteristics as well as the boundaries for security requirements patterns in order to make them more effective. By examining an existing general pattern format that describes how security patterns should be structured and comparing it to existing security requirements patterns, we are deriving characterizations and boundaries for security requirements patterns. From these attributes, we propose a defining format. We hope that these can reduce user effort in elicitation and specification of security requirements patterns.