Visible to the public Biblio

Found 12218 results

Gursoy, M. Emre, Rajasekar, Vivekanand, Liu, Ling.  2020.  Utility-Optimized Synthesis of Differentially Private Location Traces. 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :30—39.
Differentially private location trace synthesis (DPLTS) has recently emerged as a solution to protect mobile users' privacy while enabling the analysis and sharing of their location traces. A key challenge in DPLTS is to best preserve the utility in location trace datasets, which is non-trivial considering the high dimensionality, complexity and heterogeneity of datasets, as well as the diverse types and notions of utility. In this paper, we present OptaTrace: a utility-optimized and targeted approach to DPLTS. Given a real trace dataset D, the differential privacy parameter ε controlling the strength of privacy protection, and the utility/error metric Err of interest; OptaTrace uses Bayesian optimization to optimize DPLTS such that the output error (measured in terms of given metric Err) is minimized while ε-differential privacy is satisfied. In addition, OptaTrace introduces a utility module that contains several built-in error metrics for utility benchmarking and for choosing Err, as well as a front-end web interface for accessible and interactive DPLTS service. Experiments show that OptaTrace's optimized output can yield substantial utility improvement and error reduction compared to previous work.
Ghazo, A. T. Al, Ibrahim, M., Ren, H., Kumar, R..  2020.  A2G2V: Automatic Attack Graph Generation and Visualization and Its Applications to Computer and SCADA Networks. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 50:3488–3498.
Securing cyber-physical systems (CPS) and Internet of Things (IoT) systems requires the identification of how interdependence among existing atomic vulnerabilities may be exploited by an adversary to stitch together an attack that can compromise the system. Therefore, accurate attack graphs play a significant role in systems security. A manual construction of the attack graphs is tedious and error-prone, this paper proposes a model-checking-based automated attack graph generator and visualizer (A2G2V). The proposed A2G2V algorithm uses existing model-checking tools, an architecture description tool, and our own code to generate an attack graph that enumerates the set of all possible sequences in which atomic-level vulnerabilities can be exploited to compromise system security. The architecture description tool captures a formal representation of the networked system, its atomic vulnerabilities, their pre-and post-conditions, and security property of interest. A model-checker is employed to automatically identify an attack sequence in the form of a counterexample. Our own code integrated with the model-checker parses the counterexamples, encodes those for specification relaxation, and iterates until all attack sequences are revealed. Finally, a visualization tool has also been incorporated with A2G2V to generate a graphical representation of the generated attack graph. The results are illustrated through application to computer as well as control (SCADA) networks.
Wei, Wenqi, Liu, Ling, Loper, Margaret, Chow, Ka-Ho, Gursoy, Mehmet Emre, Truex, Stacey, Wu, Yanzhao.  2020.  Adversarial Deception in Deep Learning: Analysis and Mitigation. 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :236–245.
The burgeoning success of deep learning has raised the security and privacy concerns as more and more tasks are accompanied with sensitive data. Adversarial attacks in deep learning have emerged as one of the dominating security threats to a range of mission-critical deep learning systems and applications. This paper takes a holistic view to characterize the adversarial examples in deep learning by studying their adverse effect and presents an attack-independent countermeasure with three original contributions. First, we provide a general formulation of adversarial examples and elaborate on the basic principle for adversarial attack algorithm design. Then, we evaluate 15 adversarial attacks with a variety of evaluation metrics to study their adverse effects and costs. We further conduct three case studies to analyze the effectiveness of adversarial examples and to demonstrate their divergence across attack instances. We take advantage of the instance-level divergence of adversarial examples and propose strategic input transformation teaming defense. The proposed defense methodology is attack-independent and capable of auto-repairing and auto-verifying the prediction decision made on the adversarial input. We show that the strategic input transformation teaming defense can achieve high defense success rates and are more robust with high attack prevention success rates and low benign false-positive rates, compared to existing representative defense methods.
Liang, Y., Bai, L., Shao, J., Cheng, Y..  2020.  Application of Tensor Decomposition Methods In Eddy Current Pulsed Thermography Sequences Processing. 2020 International Conference on Sensing, Measurement Data Analytics in the era of Artificial Intelligence (ICSMD). :401–406.
Eddy Current Pulsed Thermography (ECPT) is widely used in Nondestructive Testing (NDT) of metal defects where the defect information is sometimes affected by coil noise and edge noise, therefore, it is necessary to segment the ECPT image sequences to improve the detection effect, that is, segmenting the defect part from the background. At present, the methods widely used in ECPT are mostly based on matrix decomposition theory. In fact, tensor decomposition is a new hotspot in the field of image segmentation and has been widely used in many image segmentation scenes, but it is not a general method in ECPT. This paper analyzes the feasibility of the usage of tensor decomposition in ECPT and designs several experiments on different samples to verify the effects of two popular tensor decomposition algorithms in ECPT. This paper also compares the matrix decomposition methods and the tensor decomposition methods in terms of treatment effect, time cost, detection success rate, etc. Through the experimental results, this paper points out the advantages and disadvantages of tensor decomposition methods in ECPT and analyzes the suitable engineering application scenarios of tensor decomposition in ECPT.
Chowdhuryy, M. H. Islam, Liu, H., Yao, F..  2020.  BranchSpec: Information Leakage Attacks Exploiting Speculative Branch Instruction Executions. 2020 IEEE 38th International Conference on Computer Design (ICCD). :529–536.
Recent studies on attacks exploiting processor hardware vulnerabilities have raised significant concern for information security. Particularly, transient execution attacks such as Spectre augment microarchitectural side channels with speculative executions that lead to exfiltration of secretive data not intended to be accessed. Many prior works have demonstrated the manipulation of branch predictors for triggering speculative executions, and thereafter leaking sensitive information through processor microarchitectural components. In this paper, we present a new class of microarchitectural attack, called BranchSpec, that performs information leakage by exploiting state changes of branch predictors in speculative path. Our key observation is that, branch instruction executions in speculative path alter the states of branch pattern history, which are not restored even after the speculatively executed branches are eventually squashed. Unfortunately, this enables adversaries to harness branch predictors as the transmitting medium in transient execution attacks. More importantly, as compared to existing speculative attacks (e.g., Spectre), BranchSpec can take advantage of much simpler code patterns in victim's code base, making the impact of such exploitation potentially even more severe. To demonstrate this security vulnerability, we have implemented two variants of BranchSpec attacks: a side channel where a malicious spy process infers cross-boundary secrets via victim's speculatively executed nested branches, and a covert channel that communicates secrets through intentionally perturbing the branch pattern history structure via speculative branch executions. Our evaluation on Intel Skylake- and Coffee Lake-based processors reveals that these information leakage attacks are highly accurate and successful. To the best of our knowledge, this is the first work to reveal the information leakage threat due to speculative state update in branch predictor. Our studies further broaden the attack surface of processor microarchitecture, and highlight the needs for branch prediction mechanisms that are secure in transient executions.
Doğu, S., Alidoustaghdam, H., Dilman, İ, Akıncı, M. N..  2020.  The Capability of Truncated Singular Value Decomposition Method for Through the Wall Microwave Imaging. 2020 IEEE Microwave Theory and Techniques in Wireless Communications (MTTW). 1:76–81.
In this study, a truncated singular value decomposition (TSVD) based computationally efficient through the wall imaging (TWI) is addressed. Mainly, two different scenarios with identical and non-identical multiple scatterers behind the wall have been considered. The scattered data are processed with special scheme in order to improve quality of the results and measurements are performed at four different frequencies. Next, effects of selecting truncation threshold in TSVD methods are analyzed and a detailed quantitative comparison is provided to demonstrate capabilities of these TSVD methods over selection of truncation threshold.
Noel, M. D., Waziri, O. V., Abdulhamid, M. S., Ojeniyi, A. J., Okoro, M. U..  2020.  Comparative Analysis of Classical and Post-quantum Digital Signature Algorithms used in Bitcoin Transactions. 2020 2nd International Conference on Computer and Information Sciences (ICCIS). :1–6.

The use of public key cryptosystems ranges from securely encrypting bitcoin transactions and creating digital signatures for non-repudiation. The cryptographic systems security of public key depends on the complexity in solving mathematical problems. Quantum computers pose a threat to the current day algorithms used. This research presents analysis of two Hash-based Signature Schemes (MSS and W-OTS) and provides a comparative analysis of them. The comparisons are based on their efficiency as regards to their key generation, signature generation and verification time. These algorithms are compared with two classical algorithms (RSA and ECDSA) used in bitcoin transaction security. The results as shown in table II indicates that RSA key generation takes 0.2012s, signature generation takes 0.0778s and signature verification is 0.0040s. ECDSA key generation is 0.1378s, signature generation takes 0.0187s, and verification time for the signature is 0.0164s. The W-OTS key generation is 0.002s. To generate a signature in W-OTS, it takes 0.001s and verification time for the signature is 0.0002s. Lastly MSS Key generation, signature generation and verification has high values which are 16.290s, 17.474s, and 13.494s respectively. Based on the results, W-OTS is recommended for bitcoin transaction security because of its efficiency and ability to resist quantum computer attacks on the bitcoin network.

Lee, Hyunjun, Bere, Gomanth, Kim, Kyungtak, Ochoa, Justin J., Park, Joung-hu, Kim, Taesic.  2020.  Deep Learning-Based False Sensor Data Detection for Battery Energy Storage Systems. 2020 IEEE CyberPELS (CyberPELS). :1–6.
Battery energy storage systems are facing risks of unreliable battery sensor data which might be caused by sensor faults in an embedded battery management system, communication failures, and even cyber-attacks. It is crucial to evaluate the trustworthiness of battery sensor data since inaccurate sensor data could lead to not only serious damages to battery energy storage systems, but also threaten the overall reliability of their applications (e.g., electric vehicles or power grids). This paper introduces a battery sensor data trust framework enabling detecting unreliable data using a deep learning algorithm. The proposed sensor data trust mechanism could potentially improve safety and reliability of the battery energy storage systems. The proposed deep learning-based battery sensor fault detection algorithm is validated by simulation studies using a convolutional neural network.
Peng, Y., Fu, G., Luo, Y., Hu, J., Li, B., Yan, Q..  2020.  Detecting Adversarial Examples for Network Intrusion Detection System with GAN. 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS). :6–10.
With the increasing scale of network, attacks against network emerge one after another, and security problems become increasingly prominent. Network intrusion detection system is a widely used and effective security means at present. In addition, with the development of machine learning technology, various intelligent intrusion detection algorithms also start to sprout. By flexibly combining these intelligent methods with intrusion detection technology, the comprehensive performance of intrusion detection can be improved, but the vulnerability of machine learning model in the adversarial environment can not be ignored. In this paper, we study the defense problem of network intrusion detection system against adversarial samples. More specifically, we design a defense algorithm for NIDS against adversarial samples by using bidirectional generative adversarial network. The generator learns the data distribution of normal samples during training, which is an implicit model reflecting the normal data distribution. After training, the adversarial sample detection module calculates the reconstruction error and the discriminator matching error of sample. Then, the adversarial samples are removed, which improves the robustness and accuracy of NIDS in the adversarial environment.
Chen, Ziyu, Zhu, Jizhong, Li, Shenglin, Luo, Tengyan.  2020.  Detection of False Data Injection Attack in Automatic Generation Control System with Wind Energy based on Fuzzy Support Vector Machine. IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. :3523—3528.
False data injection attack (FDIA) destroys the automatic generation control (AGC) system and leads to unstable operation of the power system. Fast and accurate detection can help prevent and disrupt malicious attacks. This paper proposes an improved detection method, which is combined with fuzzy theory and support vector machine (SVM) to identify various types of attacks. The impacts of different types of FDIAs on the AGC system are analyzed, and the reliability of the method is proved by a large number of experimental data. This experiment is simulated on a single-area LFC system and the effects of adding a wind storage system were compared in a dynamic model. Simulation studies also show a higher accuracy of fuzzy support vector machine (FSVM) than traditional SVM and fuzzy pattern trees (FPTs).
Hossain, Md. Turab, Hossain, Md. Shohrab, Narman, Husnu S..  2020.  Detection of Undesired Events on Real-World SCADA Power System through Process Monitoring. 2020 11th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0779—0785.
A Supervisory Control and Data Acquisition (SCADA) system used in controlling or monitoring purpose in industrial process automation system is the process of collecting data from instruments and sensors located at remote sites and transmitting data at a central site. Most of the existing works on SCADA system focused on simulation-based study which cannot always mimic the real world situations. We propose a novel methodology that analyzes SCADA logs on offline basis and helps to detect process-related threats. This threat takes place when an attacker performs malicious actions after gaining user access. We conduct our experiments on a real-life SCADA system of a Power transmission utility. Our proposed methodology will automate the analysis of SCADA logs and systemically identify undesired events. Moreover, it will help to analyse process-related threats caused by user activity. Several test study suggest that our approach is powerful in detecting undesired events that might caused by possible malicious occurrence.
Banerjee, R., Baksi, A., Singh, N., Bishnu, S. K..  2020.  Detection of XSS in web applications using Machine Learning Classifiers. 2020 4th International Conference on Electronics, Materials Engineering Nano-Technology (IEMENTech). :1—5.
Considering the amount of time we spend on the internet, web pages have evolved over a period of time with rapid progression and momentum. With such advancement, we find ourselves fronting a few hostile ideologies, breaching the security levels of webpages as such. The most hazardous of them all is XSS, known as Cross-Site Scripting, is one of the attacks which frequently occur in website-based applications. Cross-Site Scripting (XSS) attacks happen when malicious data enters a web application through an untrusted source. The spam attacks happen in the form of Wall posts, News feed, Message spam and mostly when a user is open to download content of webpages. This paper investigates the use of machine learning to build classifiers to allow the detection of XSS. Establishing our approach, we target the detection modus operandi of XSS attack via two features: URLs and JavaScript. To predict the level of XSS threat, we will be using four machine learning algorithms (SVM, KNN, Random forest and Logistic Regression). Proposing these classified algorithms, webpages will be branded as malicious or benign. After assessing and calculating the dataset features, we concluded that the Random Forest Classifier performed most accurately with the lowest False Positive Rate of 0.34. This precision will ensure a method much efficient to evaluate threatening XSS for the smooth functioning of the system.
Fan, M., Yu, L., Chen, S., Zhou, H., Luo, X., Li, S., Liu, Y., Liu, J., Liu, T..  2020.  An Empirical Evaluation of GDPR Compliance Violations in Android mHealth Apps. 2020 IEEE 31st International Symposium on Software Reliability Engineering (ISSRE). :253—264.

The purpose of the General Data Protection Regulation (GDPR) is to provide improved privacy protection. If an app controls personal data from users, it needs to be compliant with GDPR. However, GDPR lists general rules rather than exact step-by-step guidelines about how to develop an app that fulfills the requirements. Therefore, there may exist GDPR compliance violations in existing apps, which would pose severe privacy threats to app users. In this paper, we take mobile health applications (mHealth apps) as a peephole to examine the status quo of GDPR compliance in Android apps. We first propose an automated system, named HPDROID, to bridge the semantic gap between the general rules of GDPR and the app implementations by identifying the data practices declared in the app privacy policy and the data relevant behaviors in the app code. Then, based on HPDROID, we detect three kinds of GDPR compliance violations, including the incompleteness of privacy policy, the inconsistency of data collections, and the insecurity of data transmission. We perform an empirical evaluation of 796 mHealth apps. The results reveal that 189 (23.7%) of them do not provide complete privacy policies. Moreover, 59 apps collect sensitive data through different measures, but 46 (77.9%) of them contain at least one inconsistent collection behavior. Even worse, among the 59 apps, only 8 apps try to ensure the transmission security of collected data. However, all of them contain at least one encryption or SSL misuse. Our work exposes severe privacy issues to raise awareness of privacy protection for app users and developers.

Maung, Maung, Pyone, April, Kiya, Hitoshi.  2020.  Encryption Inspired Adversarial Defense For Visual Classification. 2020 IEEE International Conference on Image Processing (ICIP). :1681—1685.
Conventional adversarial defenses reduce classification accuracy whether or not a model is under attacks. Moreover, most of image processing based defenses are defeated due to the problem of obfuscated gradients. In this paper, we propose a new adversarial defense which is a defensive transform for both training and test images inspired by perceptual image encryption methods. The proposed method utilizes a block-wise pixel shuffling method with a secret key. The experiments are carried out on both adaptive and non-adaptive maximum-norm bounded white-box attacks while considering obfuscated gradients. The results show that the proposed defense achieves high accuracy (91.55%) on clean images and (89.66%) on adversarial examples with noise distance of 8/255 on CFAR-10 dataset. Thus, the proposed defense outperforms state-of-the-art adversarial defenses including latent adversarial training, adversarial training and thermometer encoding.
Vimercati, S. de Capitani di, Foresti, S., Paraboschi, S., Samarati, P..  2020.  Enforcing Corporate Governance's Internal Controls and Audit in the Cloud. 2020 IEEE 13th International Conference on Cloud Computing (CLOUD). :453–461.
More and more organizations are today using the cloud for their business as a quite convenient alternative to in-house solutions for storing, processing, and managing data. Cloud-based solutions are then permeating almost all aspects of business organizations, resulting appealing also for functions that, already in-house, may result sensitive or security critical, and whose enforcement in the cloud requires then particular care. In this paper, we provide an approach for securely relying on cloud-based services for the enforcement of Internal Controls and Audit (ICA) functions for corporate governance. Our approach is based on the use of selective encryption and of tags to provide a level of self-protection to data and for enabling only authorized parties to access data and perform operations on them, providing privacy and integrity guarantees, as well as accountability and non-repudiation.
Krasnov, A. N., Prakhova, M. Y., Novikova, U. V..  2020.  Ensuring Cybersecurity of Data Transmission in Limited Energy Consumption Networks. 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). :1—5.

In the northern gas fields, most data are transmitted via wireless networks, which requires special transmission security measures. Herewith, the gas field infrastructure dictates cybersecurity modules to not only meet standard requirements but also ensure reduced energy consumption. The paper discusses the issue of building such a module for a process control system based on the RTP-04M recorder operating in conjunction with an Android-based mobile device. The software options used for the RSA and Diffie-Hellman data encryption and decryption algorithms on both the RTP-04M and the Android-based mobile device sides in the Keil μVision4 and Android Studio software environments, respectively, have shown that the Diffie-Hellman algorithm is preferable. It provides significant savings in RAM and CPU resources and power consumption of the recorder. In terms of energy efficiency, the implemented programs have been analyzed in the Android Studio (Android Profiler) and Simplicity Studio (Advanced Energy Monitor) environments. The integration of this module into the existing software will improve the field's PCS cybersecurity level due to protecting data transmitted from third-party attacks.

Habib ur Rehman, Muhammad, Mukhtar Dirir, Ahmed, Salah, Khaled, Svetinovic, Davor.  2020.  FairFed: Cross-Device Fair Federated Learning. 2020 IEEE Applied Imagery Pattern Recognition Workshop (AIPR). :1–7.
Federated learning (FL) is the rapidly developing machine learning technique that is used to perform collaborative model training over decentralized datasets. FL enables privacy-preserving model development whereby the datasets are scattered over a large set of data producers (i.e., devices and/or systems). These data producers train the learning models, encapsulate the model updates with differential privacy techniques, and share them to centralized systems for global aggregation. However, these centralized models are always prone to adversarial attacks (such as data-poisoning and model poisoning attacks) due to a large number of data producers. Hence, FL methods need to ensure fairness and high-quality model availability across all the participants in the underlying AI systems. In this paper, we propose a novel FL framework, called FairFed, to meet fairness and high-quality data requirements. The FairFed provides a fairness mechanism to detect adversaries across the devices and datasets in the FL network and reject their model updates. We use a Python-simulated FL framework to enable large-scale training over MNIST dataset. We simulate a cross-device model training settings to detect adversaries in the training network. We used TensorFlow Federated and Python to implement the fairness protocol, the deep neural network, and the outlier detection algorithm. We thoroughly test the proposed FairFed framework with random and uniform data distributions across the training network and compare our initial results with the baseline fairness scheme. Our proposed work shows promising results in terms of model accuracy and loss.
Matin, I. Muhamad Malik, Rahardjo, B..  2020.  A Framework for Collecting and Analysis PE Malware Using Modern Honey Network (MHN). 2020 8th International Conference on Cyber and IT Service Management (CITSM). :1—5.

Nowadays, Windows is an operating system that is very popular among people, especially users who have limited knowledge of computers. But unconsciously, the security threat to the windows operating system is very high. Security threats can be in the form of illegal exploitation of the system. The most common attack is using malware. To determine the characteristics of malware using dynamic analysis techniques and static analysis is very dependent on the availability of malware samples. Honeypot is the most effective malware collection technique. But honeypot cannot determine the type of file format contained in malware. File format information is needed for the purpose of handling malware analysis that is focused on windows-based malware. For this reason, we propose a framework that can collect malware information as well as identify malware PE file type formats. In this study, we collected malware samples using a modern honey network. Next, we performed a feature extraction to determine the PE file format. Then, we classify types of malware using VirusTotal scanning. As the results of this study, we managed to get 1.222 malware samples. Out of 1.222 malware samples, we successfully extracted 945 PE malware. This study can help researchers in other research fields, such as machine learning and deep learning, for malware detection.

Chen, J., Liao, S., Hou, J., Wang, K., Wen, J..  2020.  GST-GCN: A Geographic-Semantic-Temporal Graph Convolutional Network for Context-aware Traffic Flow Prediction on Graph Sequences. 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :1604–1609.
Traffic flow prediction is an important foundation for intelligent transportation systems. The traffic data are generated from a traffic network and evolved dynamically. So spatio-temporal relation exploration plays a support role on traffic data analysis. Most researches focus on spatio-temporal information fusion through a convolution operation. To the best of our knowledge, this is the first work to suggest that it is necessary to distinguish the two aspects of spatial correlations and propose the two types of spatial graphs, named as geographic graph and semantic graph. Then two novel stereo convolutions with irregular acceptive fields are proposed. The geographic-semantic-temporal contexts are dynamically jointly captured through performing the proposed convolutions on graph sequences. We propose a geographic-semantic-temporal graph convolutional network (GST-GCN) model that combines our graph convolutions and GRU units hierarchically in a unified end-to-end network. The experiment results on the Caltrans Performance Measurement System (PeMS) dataset show that our proposed model significantly outperforms other popular spatio-temporal deep learning models and suggest the effectiveness to explore geographic-semantic-temporal dependencies on deep learning models for traffic flow prediction.
Khuchit, U., Wu, L., Zhang, X., Yin, Y., Batsukh, A., Mongolyn, B., Chinbat, M..  2020.  Hardware Design of Polynomial Multiplication for Byte-Level Ring-LWE Based Cryptosystem. 2020 IEEE 14th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :86–89.
An ideal lattice is defined over a ring learning with errors (Ring-LWE) problem. Polynomial multiplication over the ring is the most computational and time-consuming block in lattice-based cryptography. This paper presents the first hardware design of the polynomial multiplication for LAC, one of the Round-2 candidates of the NIST PQC Standardization Process, which has byte-level modulus p=251. The proposed architecture supports polynomial multiplications for different degree n (n=512/1024/2048). For designing the scheme, we used the Vivado HLS compiler, a high-level synthesis based hardware design methodology, which is able to optimize software algorithms into actual hardware products. The design of the scheme takes 274/280/291 FFs and 204/217/208 LUTs on the Xilinx Artix-7 family FPGA, requested by NIST PQC competition for hardware implementation. Multiplication core uses only 1/1/2 pieces of 18Kb BRAMs, 1/1/1 DSPs, and 90/94/95 slices on the board. Our timing result achieved in an alternative degree n with 5.052/4.3985/5.133ns.
Wu, Y., Olson, G. F., Peretti, L., Wallmark, O..  2020.  Harmonic Plane Decomposition: An Extension of the Vector-Space Decomposition - Part I. IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. :985–990.
In this first paper of a two-part series, the harmonic plane decomposition is introduced, which is an extension of the vector-space decomposition. In multiphase electrical machines with variable phase-pole configurations, the vector-space decomposition leads to a varying numbers of vector spaces when changing the configuration. Consequently, the model and current control become discontinuous. The method in this paper is based on samples of each single slot currents, similarly to a discrete Fourier transformation in the space domain that accounts for the winding configuration. It unifies the Clarke transformation for all possible phase-pole configurations such that a fixed number of orthogonal harmonic planes are created, which facilitates the current control during reconfigurations. The presented method is not only limited to the modeling of multiphase electrical machines but all kinds of existing machines can be modeled. In the second part of this series, the harmonic plane decomposition will be completed for all types of machine configurations.
Yang, Yuanyuan, Li, Hui, Cheng, Xiangdong, Yang, Xin, Huo, Yaoguang.  2020.  A High Security Signature Algorithm Based on Kerberos for REST-style Cloud Storage Service. 2020 11th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0176–0182.
The Representational State Transfer (REST) is a distributed application architecture style which adopted on providing various network services. The identity authentication protocol Kerberos has been used to guarantee the security identity authentication of many service platforms. However, the deployment of Kerberos protocol is limited by the defects such as password guessing attacks, data tampering, and replay attacks. In this paper, an optimized Kerberos protocol is proposed and applied in a REST-style Cloud Storage Architecture. Firstly, we propose a Lately Used Newly (LUN) key replacement method to resist the password guessing attacks in Kerberos protocol. Secondly, we propose a formatted signature algorithm and a combination of signature string and time stamp method to cope with the problems of tampering and replay attacks which in deploying Kerberos. Finally, we build a security protection module using the optimized Kerberos protocol to guarantee a secure identity authentication and the reliable data communication between the client and the server. Analyses show that the module significantly improves the security of Kerberos protocol in REST-style cloud storage services.
Gupta, S., Buduru, A. B., Kumaraguru, P..  2020.  imdpGAN: Generating Private and Specific Data with Generative Adversarial Networks. 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :64–72.
Generative Adversarial Network (GAN) and its variants have shown promising results in generating synthetic data. However, the issues with GANs are: (i) the learning happens around the training samples and the model often ends up remembering them, consequently, compromising the privacy of individual samples - this becomes a major concern when GANs are applied to training data including personally identifiable information, (ii) the randomness in generated data - there is no control over the specificity of generated samples. To address these issues, we propose imdpGAN-an information maximizing differentially private Generative Adversarial Network. It is an end-to-end framework that simultaneously achieves privacy protection and learns latent representations. With experiments on MNIST dataset, we show that imdpGAN preserves the privacy of the individual data point, and learns latent codes to control the specificity of the generated samples. We perform binary classification on digit pairs to show the utility versus privacy trade-off. The classification accuracy decreases as we increase privacy levels in the framework. We also experimentally show that the training process of imdpGAN is stable but experience a 10-fold time increase as compared with other GAN frameworks. Finally, we extend imdpGAN framework to CelebA dataset to show how the privacy and learned representations can be used to control the specificity of the output.
Valocký, F., Puchalik, M., Orgon, M..  2020.  Implementing Asymmetric Cryptography in High-Speed Data Transmission over Power Line. 2020 11th IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0849–0854.
The article presents a proposal for implementing asymmetric cryptography, specifically the elliptic curves for the protection of high-speed data transmission in a corporate network created on the platform of PLC (Power Line Communications). The solution uses an open-source software library OpenSSL. As part of the design, an experimental workplace was set up, a DHCP and FTP server was established. The possibility of encryption with the selected own elliptic curve from the OpenSSL library was tested so that key pairs (public and private keys) were generated using a software tool. A shared secret was created between communication participants and subsequently, data encryption and decryption were performed.
Zhang, H., Zhang, D., Chen, H., Xu, J..  2020.  Improving Efficiency of Pseudonym Revocation in VANET Using Cuckoo Filter. 2020 IEEE 20th International Conference on Communication Technology (ICCT). :763–769.
In VANETs, pseudonyms are often used to replace the identity of vehicles in communication. When vehicles drive out of the network or misbehave, their pseudonym certificates need to be revoked by the certificate authority (CA). The certificate revocation lists (CRLs) are usually used to store the revoked certificates before their expiration. However, using CRLs would incur additional storage, communication and computation overhead. Some existing schemes have proposed to use Bloom Filter to compress the original CRLs, but they are unable to delete the expired certificates and introduce the false positive problem. In this paper, we propose an improved pseudonym certificates revocation scheme, using Cuckoo Filter for compression to reduce the impact of these problems. In order to optimize deletion efficiency, we propose the concept of Certificate Expiration List (CEL) which can be implemented with priority queue. The experimental results show that our scheme can effectively reduce the storage and communication overhead of pseudonym certificates revocation, while retaining moderately low false positive rates. In addition, our scheme can also greatly improve the lookup performance on CRLs, and reduce the revocation operation costs by allowing deletion.