CPS: Medium: Learning for Control of Synthetic and Cyborg Insects in Uncertain Dynamic Environments
Lead PI:
Pieter Abbeel
Abstract
The objective of this research is to enable operation of synthetic and cyborg insects in complicated environments, such as outdoors or in a collapsed building. As the mobile platforms and environment have significant uncertainty, learning and adaptation capabilities are critical. The approach consists of three main thrusts to enable the desired learning and adaptation: (i) Development of algorithms to efficiently learn optimal control policies and dynamics models through sharing the learning and adaptation between various instantiations of platforms and environments. (ii) Creation of control learning algorithms which can be run on low-cost, low-power mobile platforms. (iii) Development of algorithms for online improvement of policy performance in a minimal number of real-world trials. The proposed research will advance learning and adaptation capabilities of practical cyberphysical systems. The proposed approach will be generally applicable and lead to a new class of learning and adapting systems that are able to leverage shared properties between multiple tasks to significantly speed up learning and adaptation. Success in this research project will bring society closer to solving the grand challenge of teams of mobile, disposable, search and rescue robots which can robustly locomote through uncertain and novel environments, finding survivors in disaster situations, while removing risk from rescuers. This project will provide interdisciplinary training through research and classwork for undergraduate and graduate students in creating systems which intimately couple the cyber and physical aspects in robotic and living mobile platforms. Through the SUPERB summer program, under-represented students in engineering will experience research in learning and robotics.
Pieter Abbeel

Pieter Abbeel received a BS/MS in Electrical Engineering from KU Leuven (Belgium) and received his Ph.D. degree in Computer Science from Stanford University in 2008. He joined the faculty at UC Berkeley in Fall 2008, with an appointment in the Department of Electrical Engineering and Computer Sciences. He has won various awards, including best paper awards at ICML and ICRA, the Sloan Fellowship, the Air Force Office of Scientific Research Young Investigator Program (AFOSR-YIP) award, the Okawa Foundation award, the 2011's TR35, the IEEE Robotics and Automation Society (RAS) Early Career Award, and the Dick Volz Best U.S. Ph.D. Thesis in Robotics and Automation Award. He has developed apprenticeship learning algorithms which have enabled advanced helicopter aerobatics, including maneuvers such as tic-tocs, chaos and auto-rotation, which only exceptional human pilots can perform. His group has also enabled the first end-to-end completion of reliably picking up a crumpled laundry article and folding it. His work has been featured in many popular press outlets, including BBC, New York Times, MIT Technology Review, Discovery Channel, SmartPlanet and Wired. His current research focuses on robotics and machine learning with a particular focus on challenges in personal robotics, surgical robotics and connectomics.

Performance Period: 09/01/2009 - 08/31/2013
Institution: University of California-Berkeley
Sponsor: National Science Foundation
Award Number: 0931463