CPS: Medium: Accurate and Efficient Collective Additive Manufacturing by Mobile Robots
Lead PI:
Chen Feng
Co-PI:
Abstract

Aging civil infrastructure is a critical worldwide problem that affects daily life, making it important to innovate more efficient and economical repair and construction methods for civil structures. Additive manufacturing, or 3D printing, offers a promising way to fulfill this compelling need. However, almost all current additive manufacturing methods rely on gantry-based systems that can only build structures within rigid frames, thereby restricting printing speed and scale, thus hindering their use in maintenance and construction. This award supports fundamental research to establish collective additive manufacturing, a novel robotics-based approach for large-scale 3D printing. Collective additive manufacturing uses a team of autonomous mobile robots to jointly print large-scale 3D structures. The results of the research will have a potentially wide range of applications in civil infrastructure maintenance and construction, to post-disaster response and extraterrestrial construction. The project is based on a convergent research approach involving robotics, artificial intelligence, control theory, and dynamical systems, which culminates in formal and informal learning activities to broaden participation of underrepresented groups in engineering.

Collective additive manufacturing envisions the use of teams of mobile robots to overcome key limitations of existing gantry-based additive manufacturing, including its small scale and slow printing speed. To unleash the full potential of collective additive manufacturing, several scientific boundaries must be pushed, ensuring optimal deployment of multiple mobile robots that print large structures according to an engineered, virtual design. This research will fill critical knowledge gaps in robotic localization, control, and coordination, to realize a robotic team that intentionally and actively modifies its surroundings to successfully complete its printing task. This interdisciplinary research program will unfold along three thrusts: artificial intelligence for planning and localization, model predictive control to adapt to printing disturbances and substrate variations, and distributed control to elicit stable collective dynamics. Theoretical advancements will proceed alongside with experimental research toward demonstrating the potential of collective additive manufacturing to accurately and efficiently print large structures in real-world settings.

Performance Period: 09/01/2019 - 08/31/2024
Institution: New York University
Award Number: 1932187